# Point-Based Population Models: Making your data count!

#### Shannon Porter Jin Yao



2024 MidAmerica GIS Symposium

### Abstract

• Join Johnson County, KS AIMS for a presentation on our point-based population models. In response to frequent requests for current or near-future population estimates in geographies not typically covered by Census Bureau datasets (such as school attendance zones or county commissioner districts) we have developed four distinct point-based population models over the past 20 years. These models effectively integrate local GIS data, including property centroid locations, address points, and land use codes, with Census Bureau data. Our approach allows for precise population estimation in any custom-defined area. This enhances both accuracy and adaptability in population estimation, making our models exceptionally valuable for local government planning and response initiatives.

• In my presentation, I will provide an overview of these models, highlighting the conceptual framework and input data unique to each. I will briefly discuss the model validation process and the challenges encountered



# Johnson County, KS





#### **Johnson County Population**



In Space on 2024-04-12 (Pop Model 1)



# Why a point-based population model?

- A population model is quite simply a bunch of points on a map, and each point is attributed with an estimate of the number of occupants at that location. So, for instance, the model would have a point at each single-family residence and an estimate of 2.5 occupants (for example) at each point.
- By drawing a circle, polygon, or some other shape on a map, we can simply add up the number of occupants at the points within that shape and, voila, that is your population estimate.





### Why a point-based population model?





# Why not just rely on estimates from the Census Bureau?

- Spatial not limited to standard census geography
  - Watersheds, School districts, Subdivisions, etc.
- Temporal can estimate at any time and/or predict
- Delay census often a year delayed



Make your local data count!



# What are the model inputs?

- Local data
  - Property, address, permit
  - land use, dwelling units, permit type, floodplains
- Census Bureau data
  - Average Household Size (AHS) and vacancy rate (VR)
  - Implemented 2021 ACS
    - update every year instead of every 10 years









### **Overview of our Models**

- Model One provides a cautious, but very reliable, estimate of current population. It relies heavily on County Land Record data.
- Model Two is used when an informed, forward-looking projection is needed. It can be better than a simple extrapolation of past estimates since that assumes growth occurs as it always has (and in areas it historically has). Model Two uses the County's address dataset to inform where growth is most likely.
- Model Three is best applied when the user already has a census count for a particular area, as it simply adds on to that base number using residential building permit data that has occurred since the count.
- Model Four facilitates estimates of "ultimate" population for an area, when development is complete and full build-out has taken place.



Local data: Parcel polygons

- $\rightarrow$  polygon centroids
- Residential parcels
  - # Dwelling units (DU)
- Tenure
  - Owner-occupied:
    - Site address = owner address
  - Renter-occupied:
    - Site address != owner address

#### Census Bureau data

- Average household size (AHS)
- Vacancy Rate (VR)





Local data: Address points (AddPnt)

- Residential addresses
  - 1 AddPnt = 1 household
- Tenure
  - Owner-occupied
    - SnglFamRes, TwoFamRes, AgVacant\*
  - Renter-occupied
    - MultFamRes

Census Bureau data

- Average household size (AHS)
- Vacancy Rate (VR)

# Occupants = AddPnt \* (1 - VR) \* AHS





**Projects** population growth since 2010

Local data: Building permits (BP)

- **Residential BP** •
  - 1 BP = 1 household
- Tenure
  - Owner-occupied
    - Single Family, Duplex

2010 - 2012 2013 - 2015

2016 - 2018 2019 - 2021 2021 - 2024

- Renter-occupied
  - Triplex, Fourplex
- Census Bureau data
  - Average household size (AHS)
  - Vacancy Rate (VR)

# Occupants = BP \* (1 - VR) \* AHS



**Projects** MAX growth potential beyond current population (= Pop model 1)

Local data: Parcel polygons

• Developable parcel centroids

# Occupants = AcresNotInFEMAZoneA \* AvgUnitsPerAcre \* AvgHouseholdSize



N 2.5 5 Miles Pop/quarter section 501 - 1000 1501 - 2000 0 - 500 1001 - 1500 2001-2576

#### Pop Model 1

Pop Model 4 points overlaying on top of Pop Model 1



# How do we use them?

- Redistricting (Board of County commissioner, school districts, etc)
- Wastewater capacity planning model 4
- Facility planning (libraries, fire, ambulance, etc)
- Emergency and disaster response
  - Tornado scenario app
  - Hazmat exercises



# How do we use them (continued)?

- Public use model 1 and 2
  - Standard Admin boundaries
  - Advanced layers Economic development
  - Any shape available on our website for any self created geography.



### Standard Admin Boundaries - precalculated



**Technology & Innovation** 

### **Advanced Layers - Economic Development**



# **Custom Shape - on the fly calculation**





### **Model validation process**

- Compare our population estimates to Census Bureau's dataset
  - On 2022-07-01
  - County, and 27 minor civil divisions (i.e., cities or townships)
  - Census Bureau: Population Estimate Program (PEP) estimates
  - Our population Model 1
    - 2 sources of Average Household Size and Vacancy Rate
      - 2021 ACS 5 year
      - 2022 ACS 5 year
    - All local data are the same



#### Population estimates on 2022-07-01

#### County, & 3 largest cities

All 27 cities/townships

|                   | PEP     | M1_<br>s2021ACS | M1_<br>s2022ACS |
|-------------------|---------|-----------------|-----------------|
| Johnson<br>County | 619,195 | 629,626         | 625,666         |
| Overland<br>Park  | 197,726 | 204,311         | 201,707         |
| Olathe            | 145,616 | 144,809         | 144,629         |
| Shawnee           | 69,198  | 70,716          | 70,083          |



#### Population estimates on 2022-07-01

#### Difference:

- M1\_s2021ACS PEP
- M1\_s2022ACS PEP

| Johnson County  |         |             |     |     | 0,41  | -    |     |       |
|-----------------|---------|-------------|-----|-----|-------|------|-----|-------|
| sound councy    |         | ОК          | 2К  | 4К  | 6K    | 8К   | 10K | 12K   |
|                 |         | # of people |     |     |       |      |     |       |
| City Township 루 | PEP2022 |             |     |     |       |      |     |       |
| Overland Park   | 197,726 |             |     |     |       |      |     | 6,585 |
|                 |         |             |     |     |       | 3,98 | 31  |       |
| Olathe          | 145,616 | -8          | 07  |     |       |      |     |       |
|                 |         | -98         | 37  |     |       |      |     |       |
| Shawnee         | 69,198  |             |     | 1   | .,518 |      |     |       |
|                 |         |             |     | 885 |       |      |     |       |
| Lenexa          | 58,617  |             |     | 357 |       |      |     |       |
|                 |         |             |     | 551 |       |      |     |       |
| Leawood         | 33,713  |             |     | 130 |       |      |     |       |
|                 |         | -           | 608 |     |       |      |     |       |
| Gardner         | 24,206  | -93         | 21  |     |       |      |     |       |
|                 |         | -97         | 28  |     |       |      |     |       |
| Prairie Village | 22,947  |             |     | 673 |       |      |     |       |
|                 |         |             |     | 387 |       |      |     |       |
| Merriam         | 10,966  |             | -2  |     |       |      |     |       |
|                 |         |             |     | 87  |       |      |     |       |
| Mission         | 9,813   |             |     | 815 |       |      |     |       |
|                 |         |             |     | 699 |       |      |     |       |
| Roeland Park    | 6,771   |             | -67 |     |       |      |     |       |
|                 |         |             | -45 |     |       |      |     |       |
| De Soto         | 6,478   |             |     | 959 |       |      |     |       |
|                 |         |             |     | 1,0 | 04    |      |     |       |
| Spring Hill     | 5,729   |             |     | 397 |       |      |     |       |
|                 |         |             |     | 153 |       |      |     |       |

Deviation in # People

PEP2022 619,195

#### M1\_s2021ACS D

10,431

6,471

#### Deviation in % of PEP2022



| City Iownship = |       |
|-----------------|-------|
| Overland Park   | 3.3%  |
|                 | 2.0%  |
| Olathe          | -0.6% |
|                 | -0.7% |
| Shawnee         | 2.2%  |
|                 | 1.3%  |
| Lenexa          | 0.6%  |
|                 | 0.9%  |
| Leawood         | 0.4%  |
|                 | -1.8% |
| Gardner         | -3.8% |
|                 | -3.8% |
| Prairie Village | 2.9%  |
|                 | 1.7%  |
| Merriam         | 0.0%  |
|                 | 0.8%  |
| Mission         | 8.3%  |
|                 | 7.1%  |
| Roeland Park    | -1.0% |
|                 | -0.7% |
| De Soto         | 14.8% |
|                 | 15.5% |
| Spring Hill     | 6.9%  |
|                 | 2.7%  |

#### Population estimates on 2022-07-01

#### Difference:

• M1\_s2021ACS - PEP

• M1\_s2022ACS - PEP

| Aubry township       | 4,676 |     |      | 74  |    |    |    |    |
|----------------------|-------|-----|------|-----|----|----|----|----|
|                      |       |     |      | 107 |    |    |    |    |
| Fairway              | 4,170 |     |      | 36  |    |    |    |    |
|                      |       |     |      | 326 |    |    |    |    |
| Mission Hills        | 3,551 |     |      | 13  |    |    |    |    |
|                      |       |     |      | 6   |    |    |    |    |
| Gardner township     | 2,553 |     |      | 561 |    |    |    |    |
|                      |       |     |      | 679 |    |    |    |    |
| Oxford township      | 2,037 |     | -189 |     |    |    |    |    |
|                      |       |     | -247 |     |    |    |    |    |
| Spring Hill township | 2,002 |     |      | 78  |    |    |    |    |
|                      |       |     |      | 6   |    |    |    |    |
| Westwood             | 1,736 |     | -100 |     |    |    |    |    |
|                      |       |     |      | 33  |    |    |    |    |
| Edgerton             | 1,734 |     | -33  |     |    |    |    |    |
|                      |       |     | -61  |     |    |    |    |    |
| Lexington township   | 1,504 |     |      | 126 |    |    |    |    |
|                      |       |     |      | 86  |    |    |    |    |
| McCamish township    | 998   |     |      | 79  |    |    |    |    |
|                      |       |     |      | 139 |    |    |    |    |
| Lake Quivira         | 958   |     |      | 37  |    |    |    |    |
|                      |       |     |      | 58  |    |    |    |    |
| Olathe township      | 901   |     |      | 115 |    |    |    |    |
|                      |       |     |      | 177 |    |    |    |    |
| Westwood Hills       | 397   |     | -2   |     |    |    |    |    |
|                      |       |     | -21  |     |    |    |    |    |
| Mission Woods        | 198   |     | -2   |     |    |    |    |    |
|                      |       |     |      | 3   |    |    |    |    |
| Bonner Springs       | 0     |     |      | 3   |    |    |    |    |
|                      |       |     |      | 3   |    |    |    |    |
|                      |       | -2K | 0    | К   | 2К | 4К | 6К | 8К |
|                      |       |     |      |     |    |    |    |    |

| Aubry township       | 1.6%                     |  |  |  |  |  |
|----------------------|--------------------------|--|--|--|--|--|
|                      | 2.3%                     |  |  |  |  |  |
| Fairway              | 0.9%                     |  |  |  |  |  |
|                      | 7.8%                     |  |  |  |  |  |
| Mission Hills        | 0.4%                     |  |  |  |  |  |
|                      | 0.2%                     |  |  |  |  |  |
| Gardner township     | 22.0%                    |  |  |  |  |  |
|                      | 26.6%                    |  |  |  |  |  |
| Oxford township      | -9.3%                    |  |  |  |  |  |
|                      | -12.1%                   |  |  |  |  |  |
| Spring Hill township | 3.9%                     |  |  |  |  |  |
|                      | 0.3%                     |  |  |  |  |  |
| Westwood             | -5.8%                    |  |  |  |  |  |
|                      | 1.9%                     |  |  |  |  |  |
| Edgerton             | -1.9%                    |  |  |  |  |  |
|                      | -3.5%                    |  |  |  |  |  |
| Lexington township   | 8.4%                     |  |  |  |  |  |
|                      | 5.7%                     |  |  |  |  |  |
| McCamish township    | 7.9%                     |  |  |  |  |  |
|                      | 13.9%                    |  |  |  |  |  |
| Lake Quivira         | 3.9%                     |  |  |  |  |  |
|                      | 6.0%                     |  |  |  |  |  |
| Olathe township      | 12.8%                    |  |  |  |  |  |
|                      | 19.6%                    |  |  |  |  |  |
| Westwood Hills       | -0.6%                    |  |  |  |  |  |
|                      | -5.4%                    |  |  |  |  |  |
| Mission Woods        | -0.9%                    |  |  |  |  |  |
|                      | 1.3%                     |  |  |  |  |  |
| Bonner Springs       |                          |  |  |  |  |  |
|                      |                          |  |  |  |  |  |
|                      | -20% -10% 0% 10% 20% 30% |  |  |  |  |  |
|                      | % of DED2022             |  |  |  |  |  |
|                      | 70 01 FEF2022            |  |  |  |  |  |

# **Challenges/Limitations**

- Challenges:
  - Ensuring you keep data sources up to date
  - Explaining why it is different than census
  - Always ways to improve it how much time to invest?
- Limitations:
  - It is a residential model
    - NOT a daytime model of where people are (i.e. Work)
    - NOT an "event" model (i.e., where people are for events (e.g., Fri night football game, Sunday AM church, Parade))



# **Recent/Upcoming improvements**

- Implement 2022 ACS 5 year
- Improve Group quarter occupants
  - Use local data that can be acquired regularly rather than only update every 10 years
- Situs/owner address improvements/corrections
- Working on model 3 and 4 updates to bring to current
- Appraiser Working Tax Year (LBCS, Dwelling Units)
- ACS 2023 Dec?



# Summary

- With some simple local data and basic Census data you can create models of your own.
  - Parcel centroid and dwelling units (Appraiser)
  - or address points (filtered to residential)
  - Census Avg household size for your county
- Recommend archiving on key census dates





# **Questions**?

- AIMS Website: <a href="https://aims.jocogov.org/">https://aims.jocogov.org/</a>
- About AIMS Storymap: <u>https://arcg.is/1mKivb0</u>
- Mapper <u>mapper@jocogov.org</u>
- Shannon Porter GIS Manager <u>Shannon.porter@jocogov.org</u>
- Jin Yao Senior Data Analyst <u>Jin.yao@jocogov.org</u>

