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and connectivity coincide and where they contradict, particularly in urbanizing settings. In this study, we couple
in-stream aquatic sensing, the Revised Universal Soil Loss Equation (RUSLE), the Index of Connectivity (IC), and
the Sediment Delivery Ratio (SDR), together with Monte Carlo uncertainty analysis, to generate a new Erosion-

Editor: Paulo Pereira Connectivity Mapping (ECM) framework. We evaluate ECM accuracy with field assessment of thirty-five sites

spread across five lowland watersheds (mean slope <5°) in Johnson County, Kansas, USA, which differ primarily
Keywords: in their land use, ranging from 21% to 89% urban. RUSLE modeling results indicate erosion is controlled by topog-
Disconnectivity raphy with high risk areas near streambanks roadway systems. SDR and IC were positively related at the five sites
RUSLE (R2 = 0.78, p < 0.05) with the highest values in the most urbanized watershed, indicating that anthropogenic
Index of Connectivity change augments connectivity. The ECM results indicate that while only 54+1% of the study area is both highly
Sediment Delivery Ratio erodible and highly connected, these areas represent 37+4% of total watershed-scale erosion. Our modeling re-

sults indicate that erosion is more likely to be the limiting factor in sediment transport, as opposed to connectiv-
ity, as there are generally more locations that are well-connected to hydrologic transport but resistant to erosion.
Our field assessment provided broad support for the ECMs; however, field assessment indicated that geospatial
modeling underpredicts how closely related erosion and connectivity are in the field and we suggest that future
models consider this coupling more explicitly. This study provides a method for combining RUSLE and IC in a new
tool (ECM) to identify spatial patterns in sediment erosion-connectivity to aid in the understanding and manage-
ment of watershed sedimentation.
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1. Introduction

Anthropogenic activity exacerbates sediment erosion from the up-
lands and connectivity to downstream receiving bodies, which in turn
has negative impacts to agricultural profitability, geomorphic stability,
and in-stream aquatic health (Heathcote et al., 2013; van der Waal
and Rowntree, 2018; Llena et al., 2019). This problem is likely to con-
tinue as global modeling projections indicate a doubling of the world's
urban population by the end of the 21st century, which will be accom-
panied by landscape urbanization to satisfy population demands
(Jiang and O'Neill, 2017). Urbanizing landscapes increase the potential
for erosion through the removal of soil surface preserving factors, such
as vegetative buffers, which expose sediment sources to transport. Fur-
ther, urbanized landscapes contain greater densities of impervious
areas, generate higher magnitude runoff, and increase transport capac-
ity of runoff (Hu et al,, 2001), thus augmenting the connectivity of sed-
iment from source to sink. In the past few years, many researchers have
investigated erosion and connectivity (Hui et al., 2010; Soohoo et al.,
2017; Bordoni et al., 2018; Mahoney et al., 2018), but we find a lack of
study aimed at modeling their linkages, an understanding of which
could provide improved land management strategies for minimizing
soil loss under anthropogenic land use change.

As erosion is difficult to measure at the watershed-scale, geospatial
modeling coupled to in-stream monitoring provides a cost-effective
method for modeling integrated sediment erosion (Beskow et al.,
2009; Yuan et al.,, 2016; Grauso et al., 2018). The Revised Universal
Soil Loss Equation (RUSLE) has emerged as the most common method
for estimating geospatial soil erosion and has been applied to mountain-
ous and lowland areas (Ozcan et al., 2008; Soohoo et al., 2017; Ozsahin
etal,, 2018; Zhao et al., 2020), ranging in watershed areas from < 1 km?
to millions of km? (Borrelli et al., 2012; Napoli et al., 2016; Zeng et al.,
2017; Zerihun et al., 2018). RUSLE takes into consideration geospatial
data relating to topography, land cover, pedology, land management,
and rainfall intensity to predict annual-scale sediment erosion (Smith
and Wischmeier, 1962; Renard et al., 1997; Hamel et al., 2017; Singh
and Panda, 2017). Since some factors, such as the erodibility of a partic-
ular land use, may be difficult to parameterize, statistical methods such
as Monte Carlo sampling can be used to assess parameter uncertainty
(Papadopoulos and Yeung, 2001; Harrison, 2009; Martin and Ayesa,
2010). Other limitations of RUSLE are that it is not applicable to single
storm event analysis (unlike MUSLE), does not account for gully or chan-
nel erosion, and does not explicitly represent hydrologic and erosion
processes as it is an empirical model (Renard et al., 2008). In situ sensing
of stream discharge and sediment concentration (or turbidity) allows
for the calculation of sediment yields and the investigation of a
watershed's efficiency for exporting eroded material, termed the
Sediment Delivery Ratio (SDR) (Borselli et al., 2008; Beskow et al., 2009;
Hui et al., 2010; Hamel et al., 2017; Grauso et al., 2018; Heckmann and
Vericat, 2018; Zhao et al., 2020). Despite the widespread development
and deployment of these tools, we find few cases in the literature
(Lopez-vicente et al., 2013; Zhao et al,, 2020) that investigate sediment
erosion and delivery across actively urbanizing landscapes.

Sediment connectivity is defined as the degree to which a system fa-
cilitates the transfer of water and sediment through the spatial arrange-
ment of geomorphic features and processes (Heckmann et al., 2018).
Two types of connectivity emerge from this definition: structural and
functional. Structural connectivity is the spatial configuration of system
components whereas functional connectivity represents the dynamic
spatiotemporal processes of a system (Heckmann et al., 2018). Struc-
tural connectivity indices are more commonly applied (Cavalli et al.,
2013; Lépez-vicente et al. 2013; Tiranti et al., 2018; Tarolli et al.,
2019) as they require only topographic data. The Index of Connectivity
(IC), developed by Borselli et al. (2008), is a commonly used method for
numerically modeling sediment connectivity at the catchment scale and
has been applied to examine the effect of land use change, rilled hill-
slope connectivity, and landslide susceptibility (Cavalli et al., 2013;
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Tiranti et al., 2018; Llena et al., 2019; Lu et al., 2019). Though it was
developed for mountainous regions, the IC has also been applied suc-
cessfully to lowland settings although care must be taken as IC may
overpredict hotspots of connectivity in lowlands as it does not consider
factors other than topography that can control disconnectivity in an
area (e.g. buffers) (Fryirs, 2012; Gay et al., 2016; Calsamiglia et al.,
2018; Husic et al., 2020). The simplicity of the index makes it an attrac-
tive tool for assessing connectivity as it requires very little data and is
not computationally intense, allowing for large-scale and/or fine-
resolution application (Cavalli et al., 2013; Crema and Cavalli, 2018;
Husic et al., 2020; Mahoney et al., 2018; Tarolli et al., 2019). However,
the IC does not entirely account for soil surface characteristics that affect
runoff in lowland areas and as such it should be accompanied by either
index revision or complimentary field campaigns (Gay et al., 2016). A
field assessment allows for connectivity observations to be fitted to
the study area to examine unaccounted for connectivity process that
are highly complex, especially in urbanizing settings.

The capability of a land parcel to be eroded does not necessarily en-
tail its connection to downstream waterbodies due to blockages in the
sediment cascade, a process known as (dis)connectivity (Fryirs, 2012).
(Dis)connectivity occurs because the geomorphic processes responsible
for sediment erosion (e.g., channel geometry and weathering) can differ
from those responsible for connectivity (e.g., sediment cascade block-
ages) (Cavalli et al., 2013; Hamel et al., 2017; Heckmann et al., 2018).
Relatively little is known regarding the spatial variability in erosion-
connectivity linkages, or where these processes coincide (i.e. couplings)
and where they contradict (i.e. (de)couplings). Until very recently, most
geospatial modeling work has applied either erosion (Ozcan et al., 2008;
Biswas and Pani, 2015; Rizeei et al., 2016; Lisboa et al., 2017) or connec-
tivity (Cavalli et al., 2013; Bordoni et al., 2018; Calsamiglia et al., 2018;
Tiranti et al., 2018; Tarolli et al., 2019) independently to examine sedi-
ment transport. Some new tools explicitly simulate connectivity and
erosion but require extensively-calibrated hydrologic and sediment
transport models (Mahoney et al., 2018, 2020a, 2020b) that are more
data-intensive than geospatial index models. Only a few studies
(Hamel et al., 2017; Zhao et al., 2020), to our knowledge, have applied
RUSLE and IC in a single analysis with Zhao et al. (2020) relating the cal-
culations to examine sediment load variations attributable to land use
change over time. However, new geospatial modeling tools for elucidat-
ing where erosion and connectivity linkages are coupled and (de)
coupled are needed for more informed land management. Further,
such models should be extensively validated by field reconnaissance
to assess accuracy of process representation and limits of model
applicability.

Overall, this study aims to understand how sediment erosion and
connectivity are linked across an urbanizing lowland landscape with
the following objectives: (1) apply the RUSLE and IC models to five wa-
tersheds across an urbanization gradient, (2) identify anthropogenic in-
fluences on spatial gradient of erosion and connectivity, and (3) identify
couplings and (de)couplings of sediment erosion and connectivity using
new modeling and field assessment approaches.

2. Study site and materials
2.1. Study site

Johnson County (1235 km?) is a rapidly urbanizing area in north-
eastern Kansas (Fig. 1a) that has seen a population increase of about
32% from 2000 to 2018, making it the most rapidly developing area in
Kansas (Rasmussen and Gatotho, 2014). The county constitutes the
southwestern quadrant of the Kansas City metropolitan area, which
has a population of over 2 million people. The land cover shift from
urban to agricultural is distinct and indicates an urban sprawl from
Kansas City (northeast) into rural Johnson County (southwest) (Fig. 1b).
The broader geographical region is characterized as lowland plains with
an average slope of 3.7° and a temperate climate (MAT: 13.1 °C; MAP:
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Fig. 1. (a) Location of Johnson County, Kansas in reference to location in the United States. (b) Pour point locations, rain gages, stream networks, sinks (e.g. lakes and reservoirs), and land
use for Kill Creek, Cedar Creek, Mill Creek, Indian Creek, and Blue River. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

958 mm). In this work, we focused on the five largest watersheds in John-
son County: Blue River (170 km?), Kill Creek (130 km?), Cedar Creek
(123 km?), Mill Creek (150 km?), and Indian Creek (168 km?) (Table 1).
The watersheds are similar in their drainage areas, rainfall, and average
slopes, but they differ vastly in land use. Indian Creek (89.4%) and Mill
Creek (61.8%) are mostly urbanized while Cedar Creek (30.5%), Kill
Creek (26.4%), and Blue River (21.1%) are less urbanized. There were
major sinks, such as reservoirs, lakes, dams, and quarries that removed
flow from transport, and we have delineated the sink drainage area for
each of these. As land-cover is the major feature that substantially differs
across the watersheds, the study sites provide an opportunity for us to ex-
amine how the degree of urbanization impacts erosion and connectivity
across urban, mixed, and agricultural landscapes.

2.2. Materials

High-resolution turbidity and discharge data, collected and main-
tained by the United States Geological Survey (USGS, 2018), were
used to calculate sediment yield for this study (2004 to 2007). USGS sta-
tions are located at the downstream parts of the watersheds (Fig. 1b).
Turbidity data were collected by high-frequency sensors installed at
the monitoring stations while discharge was predicted by stage-
discharge rating curves for each station. Thirty-minute rainfall data
from ten stations in Johnson County were download from the period
of 2002 to 2008 (StormWatch, 2020) (Fig. 1b). Land surface datasets
for landcover and soil composition (Fig. S1) were downloaded from
National Land Class Database (NLCD, 2015) and the National Cooperative

Table 1

Drainage area, average slope, annual rainfall, and land use characteristics of the studied watersheds. Watersheds are ordered from least to most urban.
Watershed Area (km?) Average Slope (°) Average Rainfall (mm/yr) Urban Agriculture Forest Grassland Water
Blue River 170 35 955 21.1% 64.1% 13.0% 0.6% 1.2%
Kill Creek 130 35 968 26.4% 55.4% 16.4% 0.8% 1.0%
Cedar Creek 153 43 935 30.5% 43.9% 22.3% 2.0% 1.3%
Mill Creek 150 35 960 61.8% 23.4% 13.6% 0.6% 0.6%
Indian Creek 168 35 973 89.4% 6.8% 3.2% 0.4% 0.2%
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Soil Survey over the course of a century (USDA, 2018), respectively. The
land cover data was provided at 30-m resolution with a 16-class legend
based on an Anderson Level Il classification system with a range of agree-
ment from 71% to 97% depending upon site location (NLCD, 2015). The
RUSLE model in this study deployed high-resolution 1-m digital elevation
maps (DEMs) provided by Johnson County Automated Information Map-
ping System (AIMS, 2020).

3. Methods

We developed the following workflow to address our research ob-
jectives (Fig. 2):

a) Erosion Modeling: to convert raster data sets into spatial sediment
erosion maps and perform uncertainty analysis on land cover fac-
tors;

b) Aquatic Sensing: to integrate stream discharge and sediment turbid-
ity data to determine sediment yield at watershed pourpoints;

c) Connectivity Modeling: to map sediment connectivity using IC, con-
vert sediment yield to SDR, and examine the relationship between
study sites;

d) Linkage Analysis: to obtain a singular map linking erosion and con-
nectivity modeling and validate with field assessment.

3.1. Sediment erosion modeling

3.1.1. Revised Universal Soil Loss Equation

Our study used the Revised Universal Soil Loss Equation (RUSLE) to
spatially model soil loss ata 1 m x 1 m grid resolution to classify erosion
prone areas (Renard et al., 1997). The RUSLE model is a function of cli-
mate, soil, topography, and land use. The annual soil loss per grid cell
is calculated based on the following equation:

A = RKLSCP (1)
where A is the soil loss per area (tons ha—! yr—!), Ris the rainfall erosiv-
ity or rainfall and runoff factor in a select area (Mjmmha—"h~'yr=1),K
is the soil erodibility factor for each soil type (ton ha h ha™!

MJ]~! mm™1), Lis the slope length factor (unitless) and is the ratio of
soil loss from a field's slope length to the soil loss from a reference plot size
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of 72.6/, S is the slope steepness factor (unitless) and is the ratio of soil loss
from the field slope to the soil loss from a reference slope of 9% slope, Cis
the cropping management factor (unitless) that is the ratio of soil loss for
a specified land cover to the soil loss, and P is the erosion control practice
factor (unitless) (Wischmeier and Smith, 1978).

Rainfall erosivity was estimated by classifying storm events as the
total rain amount per day using 30-min rainfall data at 10 rainfall sta-
tions across Johnson County (Fig. 1b). Inverse distance weighting was
used to develop the erosivity gradient across all five watersheds
(Ozsahin et al., 2018; Zhao et al., 2020). The soil erodibility factor (K)
at a 10-m resolution was publicly available to download from the
United States Department of Agriculture (USDA, 2018) using their Soil
Data Viewer extension for ArcGIS (ESRI, 2006). Erodibility in the Soil
Data Viewer tool is a function of percentage of silt, sand, and organic
matter as well as soil structure and saturated hydraulic conductivity.
The LS factor was estimated using the Moore and Burch equation
based on flow accumulation (Ozsahin et al., 2018) as the geomorphol-
ogy was spatially consistent. The cropping management factor (C) was
determined based on literature-reported values of land cover type
(Table S1 and references therein). From our literature review of thirty-
two studies, we found that reported C factors varied considerably,
even for the same land use description. Thus, in our RUSLE modeling,
we performed Monte Carlo sampling to assess how C factor uncertainty
propagates into erosion modeling estimates. Due to the lack of informa-
tion regarding erosion practices in Johnson County the erosion control
practice factor (P) was taken as 1.0 (Renard et al., 1997).

3.1.2. Monte Carlo uncertainty analysis

In this study, Monte Carlo simulation was used to assess how subjec-
tive selection of cropping management factors (C) affects uncertainty in
RUSLE erosion prediction. We aggregated thirty-two studies from the
RUSLE literature and generated discrete statistical distributions of C fac-
tors for each land class (Table S1). The C values ranged from 0 to 1,
0-0.32, 0-0.32, and 0-0.8 for agricultural, forest, grassland, and urban
classes, respectively. Two hundred simulations were performed for
each year of the study period (2001-2007). For each simulation, indi-
vidual C factors were randomly sampled from their respective parent
statistical distributions. Thereafter, the RUSLE model was executed and
average erosion for each watershed was estimated using the Mean
Zonal Statistics function in ArcGIS. Lastly, we report mean and standard

EROSION MODELING CONNECTIVITY MODELING ASSESSING LINKAGES

1-m. DEM [SedInConnect H IC-stream ]7
(AIMS) LS factor Erosion and
l connectivity
30-min rainfall -
Bmiacy =
Map (ECM)
Modeled
Soil survey K factor Erosion (A) Sediment
(SSURGO) T e Delivery
Ratio (SDR)
Land Field assessment
G Tl i e ) "4
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Fig. 2. The workflow of erosion and connectivity modeling and analysis of erosion-connectivity linkages. Sharp cornered boxes indicate datasets with the data-source listed in parenthesis.
Round boxes represent modeled products. Dashed-lines indicate Monte Carlo simulations and re-sampling of the CP factor to generate erosion uncertainty bounds.
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deviation values using the 95% prediction interval of all Monte Carlo
simulations.

3.2. Sediment connectivity analysis

3.2.1. Sediment Delivery Ratio

The sediment delivery ratio (SDR) is defined as the ratio between
sediment yield at a watershed pourpoint and the average annual soil
loss across the upstream watershed (Zhao et al., 2020). The SDR is a
common indicator (Brierley et al., 2006; Rommens et al., 2006;
Baartman et al., 2013; Di Stefano and Ferro, 2019) used as a proxy for
catchment connectivity at the most basic level with values approaching
1 indicating full connectivity (Gay et al., 2016). SDR is interpreted as a
reflection of sediment connectivity between water networks and land
surface sediment sources and is used as a black box measure of water-
shed scale (dis)connectivity (Najafi et al., 2021). In this study, the SDR
was modeled using the RUSLE model and sediment yield estimated by
the following equation:

5, = PRTE) @)

where S, is the sediment yield (tons ha~'yr1), STE; is the total ero-
sion from each source in the watershed (tons yr—!), and A,, is the water-
shed area (acres). Sediment yield was estimated using aquatic sensing
data as follows:

5= [ Qudt 3)
where:
st = Q'Cs (4)

where Q is the discharge at an hourly time interval (m? s~ 1), C; is the
suspended sediment concentration (mg L~') determined from
transforming turbidity measurements (NTU) at hourly resolution from
USGS using regression equations (Table S2), and Qss is the sediment
load (ton hr~!) at each time step. The sediment yield integral was
discretized and approximated numerically.

3.2.2. Index of Connectivity

The Index of Connectivity (IC) developed by Borselli et al. (2008)
was used to represent structural sediment connectivity and is described
as the probability of sediment from an upslope point to travel down-
slope to a local sink or target. IC is empirically defined by Borselli et al.
(2008) as:

Ic = logio () (5)

where D, and Dy, identify the upslope and downslope elements of con-
nectivity, respectively. The IC can range from [ —e, 4] with greater
values indicating higher connectivity.

The upslope component D, describes the potential of sediment
yields from upslope sources to be routed downward and is approxi-
mated as:

Dyp = W-S-VA (6)

where W is the average weighting factor of the contributing upslope
area, S is the average slope of the contributing upslope area (m/m)
and A is the contributing upslope area (m?).

The downslope component Dy, describes the probability of the sed-
iment flow to travel along the flow path arriving at the nearest target or
sink and is estimated as:
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d:
Dav = 3 gt @)
1

where d; is the length of the flow path to the downstream channel along
the it" cell at the steepest slope direction (m). W; is the weighting factor
at the i™ cell and S; is the slope gradient at the i™ cell.

The weighting factor W was originally introduced in Borselli et al.
(2008) to account for surface characteristics that affect runoff and sedi-
ment flux processes. Borselli et al. (2008) estimated this parameter by
using the C-factor from RUSLE but later findings by Cavalli et al.
(2013) showed the use of the surface roughness or roughness index
(RI) better simulates surface characteristics. The RI is the standard devi-
ation of the residual topography computed over a 5x5 cell moving win-
dow (Cavalli et al., 2013) and is calculated as:

B xi—xm)?
Rl = (&=t T/ o5 (8)

where ¥; is the value of the i™ cell of the residual topography within the
moving window and x,, is the mean of the cells in the 5x5 cell window.
The weighting factor W is then defined as:

W= 1—(i> 9)

RI MAX

with Ryax as the maximum value of RI across the study sites.

The IC in this study was modeled using the SedInConnect standalone
tool developed by Crema and Cavalli (2018). SedInConnect has the main
components consisting of Surface Roughness, Weighting Factor,
Connectivity Index Targets, and sink targets. The original DEM raster is
used to find the surface roughness based on a set moving window to cal-
culate the weighting factor. The Connectivity Index subset allows for the
ICto be calculated at either a specified target or the pourpoint. Sink fea-
tures can be added to mask areas from IC analysis in the calculation of
the distribution of value. In this work, the IC was calculated for major
streamways for each watershed with values being normalized based
on watershed for spatial comparison. Additionally, the IC using the
pourpoint as target was calculated for each watershed to validate the
use of stream targets for spatial analysis. To maintain consistency across
watersheds when computing the stream-target IC, Soil and Water As-
sessment Tool (SWAT) was used to identify main runoff targets. SWAT
uses ArcHydro feature to determine the stream definition using a
threshold of 1% of maximum flow accumulation (ESRI ArcMap 10.3).
All watersheds converge to fourth order networks. Finally, major sink
areas (Fig. 1b) were added for large reservoirs, lakes, and quarries to un-
derstand how masking these areas (i.e. excluding them from down-
stream connectivity) would affect analysis.

3.3. Sediment erosion and connectivity linkages

3.3.1. Erosion-Connectivity Mapping

We developed the Erosion-Connectivity Mapping (ECM) framework
to geospatially model the couplings and (de)couplings of erosion and
connectivity. First, erosion and stream target IC estimates were normal-
ized between 0 and 1, respectively, and kernel density functions of the
estimates were made for each watershed. Thereafter, Erosion-
Connectivity Biplots (ECBs) were generated by plotting the IC kernel
on the x-axis and the erosion kernel on the y-axis. Each ECB was segre-
gated into four quadrants: high erosion & high connectivity (E-C), high
erosion & low connectivity (E-c), low erosion & high connectivity (e-C),
and low erosion & low connectivity (e-c). Quadrant break points were
determined using the Jenks natural breaks algorithm (Jenks, 1967).
Jenks natural breaks set the most effective class limits for similar values
while maximizing the difference between classes as used in similar ap-
plications by Bordoni et al. (2018) and Tiranti et al. (2018). ECMs were
then generated by assigning each 1 m x 1 m grid cell in the study area an
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ECB quadrant designation (E-C, E-c, e-C, or e-c). To assess uncertainty
within the ECM framework, Monte Carlo simulations from the erosion
analysis were used to generate ECB and ECM solution sets. A subset of
25 (of the 200 total) Monte Carlo sets were used because generating
hundreds of maps, for each watershed, was computationally intensive.
The subset of 25C-factor maps were selected to represent the overall
data distribution of the 200 total simulations. Additionally, each run
was computed across the 7-year period resulting in a total of 175 data
points. Statistics, such as the percent watershed area falling within
each ECB quadrant, were calculated as the mean and standard deviation
of all Monte Carlo simulations.

3.3.2. Field assessment of erosion-connectivity

Field assessment was performed to verify ECM model results and in-
vestigate limitations. Thirty-five field locations (7 in each of the 5 water-
sheds) were chosen to get equal coverage of all four modeled ECM
quadrants (E-C, E-c, e-C, and e-c). In the field, we surveyed 10 subfactors
for erosion and 10 subfactors for connectivity (Table S3). Each subfactor
score ranged from 0 to 15, resulting in a maximum score of 150, which
would indicate high erosion or connectivity, and a minimum score of 0,
which would indicate low erosion or connectivity. To avoid bias due to
sediment flows or large runoffs from storm events, site observations
were made in similar weather conditions with minimal rainfall before
each visit. The ECM was evaluated, and its limits investigated, by com-
paring how well-correlated erosion and connectivity were predicted
by the ECM versus how well-correlated they were observed in the
field. This relation was done using linear regression and statistical sig-
nificance testing (o = 0.05).

Subfactors for assessment were compiled from erosion and
connectivity literature. Field connectivity subfactors were natural buffer
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presence (Marchamalo et al., 2016), distance to local sink (Borselli et al.,
2008), land cover variability (Mahoney, 2020), presence of visible path-
ways (Tiranti et al., 2018), subsurface flow paths (Calsamiglia et al.,
2018), amount of exposed bare soil (Borselli et al., 2008), presence of
deposition (Borselli et al., 2008), amount of visible disconnected
plains (Mishra et al., 2019), presence of erosion control features
(Marchamalo et al., 2016), and presence of incised channels (Tiranti
et al,, 2018). Factors such as land cover, subsurface flow paths, deposi-
tion, soil sources, and erosion control features are not directly incorpo-
rated into the IC concept making it important to capture due to
anthropogenic influence in the area. Field erosion subfactors were com-
posed of presence of deposition (Borselli et al., 2008), depth of vegeta-
tion roots (Mahoney, 2020), amount of sediment sources (Cavalli
et al, 2013), presence of uncompacted soil (Borselli et al., 2008), com-
position of sink (Calsamiglia et al., 2018), presence of depression stores
(Messenzehl et al., 2014), channel slope (Cavalli et al., 2013), amount of
canopy cover (Mahoney, 2020), and lateral coverage of erosion relative
to sink (Mishra et al., 2019). Examination of sediment sources, vegeta-
tion cover, and overall spatial extent of process are important to exam-
ine due to the lack of resolution for land cover in RUSLE with natural
presence in urban areas not represented in the C-factor.

4. Results and discussion
4.1. Sediment erosion modeling

RUSLE factors for sediment erosion prediction varied considerably
along the urbanization gradient in Johnson County, KS (Fig. 3). The rain-

fall erosivity factor (R) varied within the range of 3727 to 5736 MJ-mm-
[ha-h-yr]~! across the watersheds (Fig. 3a), indicating a climatically
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Fig. 3. Spatial distribution maps of (a) rainfall erosivity (R-factor), (b) soil erodibility (K-factor), (c) slope length and steepness (LS-factor), and (d) crop management (CP-factor).
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high potential for generating erosion. The average rainfall erosivity was
3966,4272,4442, 4851, and 4221 for Kill Creek, Cedar Creek, Mill Creek,
Indian Creek, and Blue River, respectively. The highest R factor values
corresponded to Indian Creek, the most urban watershed, whereas a
more homogeneous pattern can be observed across the four other wa-
tersheds. The soil erodibility factor (K) values were within the range
of 0 to 0.065 ton-hectare-h- [ha-MJ-mm] ™! for the study watersheds
(Fig. 3b). Easily erodible soils can be observed in relatively larger areas
in the Kill Creek and Cedar Creek watersheds, which can be explained
by the larger percentage of loosely bound sandy soils in their texture.
Whereas, the Mill Creek, Indian Creek, and Blue River watersheds
were mostly occupied by less erosion-sensitive soils with less sand in
their soil composition. Spatially, watershed-average LS factor values
were higher in Cedar Creek (1.26) and Mill Creek (1.34) as opposed to
Kill Creek (0.82), Blue River (0.87), and Indian Creek (0.88), indicating
that these two watersheds have slope lengths and gradients more
prone to erosion (Fig. 3c). In particular, the near-channel areas for the
Cedar and Mill watersheds show considerable variability in the magni-
tude of the LS factor, whereas this same degree of variability was not ob-
served for the other watersheds. Fig. 3d shows the C factor map for the
five land-uses identified in this study: open water, forest, grassland,
urban, and agriculture. The average C factor values for the land uses
were 0, 0.04, 0.08, 0.1, and 0.29, respectively. Blue River (0.21) and Kill
Creek (0.20), the most agriculturally dominated watersheds, were gen-
erally characterized by larger C values, indicating landscape susceptibil-
ity to erosion, likely due to cropland. Indian Creek had relatively lower
average C values (0.11) as it is mostly covered with urban features.
Mill Creek (0.14) and Cedar Creek (0.17) contain several dominant
land covers, including developed lands, deciduous trees, and cultivated
crops and thus have larger variability in C factor compared to the other
watersheds.

RUSLE modeling results showed large spatiotemporal variability
in average annual erosion with high losses concentrated around
streambanks and low losses in distal ridges (Fig. 4). The large spatio-
temporal variability in modeled annual erosion was primarily a result
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Table 2

Watershed erosion and sediment delivery ratio (SDR) results. Measured yield (2004 to
2007) was determined from turbidity sensor data. Modeled erosion (2001 to 2007) was
estimated using RUSLE. Results are presented as the mean (410) from two-hundred
Monte Carlo realizations. Watersheds are ordered from least to most urban.

Watershed Measured Yield Modeled Erosion Mean

(tons/yr) (tons/ha) SDR
Blue River 28,751 4 15,227 227 £ 119 0.07
Kill Creek 7496 + 4219 175 £ 9.6 0.03
Cedar Creek 20,711 + 11,260 256 + 134 0.05
Mill Creek 27,887 £+ 13,311 271 £ 171 0.07
Indian 43141 + 12,815 172 + 148 0.15

Creek

of variations in the R, LS, and C factors. The average annual erosion of
all watersheds was 20.2+13.0 tons ha™! (Table 2). The watersheds
ranked in order from greatest to least mean annual erosion were Mill
Creek, Cedar Creek, Blue River, Kill Creek, and Indian Creek. Mill Creek
(27.1 tons ha™!) and Cedar Creek (25.6 tons ha™!) had the highest ero-
sion estimates due to the combination of steeper slopes near channel
networks, considerable areas of erosion-prone agricultural land, and a
high concentration of erodible soils. Indian Creek (17.2 tons ha~') and
Kill Creek (17.5 tons ha™') had relatively lower erosion rates which
can be explained by smaller LS factors compared to the other water-
sheds. Smaller C values corresponding to the urban landscapes in
Indian Creek and lower R factors during the study period in Kill Creek
are other factors contributing to reduced soil erosion estimates in
these two watersheds. Intermediate amounts of erosion occurred in
Blue River (22.7 tons ha™!) because its large C factor was balanced by
poorly erodible soils and short slope lengths/gradients. However, we
recognize that RUSLE only simulates rill and inter-rill erosion, so these
results are only a fraction of the total sediment yield and channelized
erosion likely contributes variably in a manner not described by RUSLE.

In our review of C factors for landscape erosion susceptibility, we
found few studies (Alk et al., 2009; Lisboa et al., 2017; Soohoo et al.,

Mill Creek

Indian Creek

Blue River,

6

Fig. 4. Spatial distribution of mean erosion losses (tons/ha) as modeled by RUSLE. Sinks and their drainage areas are also plotted.
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2017) that perform uncertainty analysis on RUSLE modeled erosion. To
gain an understanding of the variable sediment erosion processes, for
upland erosion at least, we conducted extensive Monte Carlo uncer-
tainty analysis of C factor selection. The results showed that Mill Creek
(std = 17.1 tons ha—!) and Indian Creek (std = 14.8 tons ha™!), the
two most urban watersheds, had the highest variability in soil loss esti-
mates. On the other hand, Kill Creek (std = 9.6 tons ha™!) and Blue
River (std = 11.9 tons ha™!), the two most agriculturally dominated
watersheds, had lowest uncertainties in the modeled erosion. This dif-
ference in variability is attributed mainly because there is much less
agreement in C factor values for urban than for rural land uses in the
RUSLE literature (Jain and Das, 2010; Soohoo et al., 2017). Further,

Science of the Total Environment 764 (2021) 144255

since the C factor in RUSLE was originally formulated for agricultural
cropland, the application of these factors to urban environments is gen-
erally more difficult and corresponds to larger uncertainties (Lisboa
et al,, 2017). In our literature review of 32 RUSLE studies, we found
none that explicitly modeled the uncertainty of C factor variability.
Most commonly, a single C factor that most closely resembled the inves-
tigated study site would be chosen from the literature and applied to the
model watershed erosion (Alexakis et al., 2013; Biswas and Pani, 2015;
Ozsahin et al., 2018). However, as RUSLE is an empirical equation in
which each factor proportionally controls erosion estimates and we
found several orders of magnitude difference within the same reported
C factors from one study to the next. Thus, we highly recommend that
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watershed modelers and decision-makers consider performing Monte
Carlo sampling to quantify uncertainties associated with C factor
selection.

4.2. Sediment connectivity analysis

4.2.1. Sediment Delivery Ratio

Annual sediment yield, measured from continuous discharge and
turbidity data, ranged from 7496 tons y ! in Kill Creek up to 43,141
tons y~ ! in Indian Creek (Table 2). The urban watersheds (Mill and
Indian) tended to have higher baseflows, flashier events, and greater
peak flows, which resulted in larger sediment concentrations than in
the agricultural watersheds (Kill, Cedar, and Blue) (Fig. 5). This sedi-
ment yield combined with the prior analysis of erosion resulted in
watershed-scale SDR values varying considerably from 0.03 to 0.15
(Table 2). Indian Creek, the most urbanized watershed, produced the
highest SDR (0.15) whereas Kill Creek, the smallest and second-most
rural watershed, produced the lowest SDR (0.03). The low overall
SDRs indicate that at least 85 to 97% of sediment produced by upland
rill and inter-rill erosion is subsequently deposited before reaching our
monitoring stations. Actual storage is likely even greater as measured
yield at the monitoring stations is a combination of upland and instream
erosion, the latter of which is not considered in RUSLE. While this rela-
tive disconnectivity seems high, other studies in lowland settings have
shown much greater storage with overall catchment delivery as low
as 1% (Walling et al., 2006).

Regarding watershed-scale connectivity across land use, the SDR for
urban watersheds (0.11) was typically double that of rural watersheds
(0.06). Indian Creek is the most urbanized watershed and produced
the highest measured yield and SDR, but also produced the lowest
modeled erosion due to RUSLE not accounting for streambank erosion
(Wischmeier and Smith, 1978). The high measured yield is likely be-
cause urbanization often leads to greater contribution of stream-bank
erosion due to increased peak discharge and contribution of sediment-
starved runoff from impervious surfaces (Mukundan et al., 2010).
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Though Mill Creek is also heavily urbanized, and likely contributes sub-
stantial streambank erosion, its SDR (0.07) is less than Indian Creek's
and the same as the most-rural watershed, Blue River. The primary dif-
ference driving erosion between Mill Creek and Indian Creek is that LS
factor for Mill Creek (1.34) is 50% greater than for Indian Creek (0.88),
despite their equivalent average watershed gradients (3.5°; Table 1).
This result indicates that much of the high-gradient Mill Creek slopes
are near the primary channel and more well-connected to transport
(Fig. 3¢c) as opposed to relatively disconnected erosion hot spots in
Indian Creek. These results broadly agree with other work highlighting
the importance of slope in impacting SDR with smaller values in lower-
gradient watersheds (Hui et al., 2010). Thus, the spatiotemporal vari-
ability in the location and length of steep slopes can cause substantial
erosion and connectivity differences even among watersheds with sim-
ilar land use.

We used a watershed-scale SDR value to examine the impacts of
land use and geomorphology on sediment dynamics and to serve as a
proxy of sediment connectivity (Heckmann and Vericat, 2018; Wohl
et al,, 2019). Watershed-scale approximations of SDR integrate a multi-
tude of factors that may have considerable in-watershed variation of
vegetation, transport systems, material properties, and complex land
surface interactions (Singh and Panda, 2017). Recently, more and
more studies are highlighting the need to couple RUSLE predictions
with SDR simulations to better represent and understand modeled ero-
sion processes (Hamel et al., 2017; Zhao et al., 2020). Future work in es-
timating watershed-scale SDR should work to constrain uncertainty
regarding how much of the measured yield is upland erosion versus
stream bank erosion. Overall, our results indicate that as urbanization
increases so does SDR and, by proxy, the maximum potential for sedi-
ment transport.

4.2.2. Index of Connectivity

Spatial structural connectivity patterns (from IC analysis) varied
substantially depending on the choice of sink target: stream network
(Fig. 6) or pour point (Fig. S2). With the higher order streams as targets,

Mill Creek

Indian Creek

Blue River

Fig. 6. Spatial distribution of Index of Connectivity (IC) for streamlines as targets. Sinks and their drainage areas are also plotted.
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near-channel hillslopes were highly connected due to the proximity be-
tween particle origin and stream sink (Fig. 6). The average IC values
using the stream channel network as targets were —5.92, —6.50,
—5.83, —5.83, and —5.92 for Blue River, Kill Creek, Cedar Creek, Mill
Creek, and Indian Creek, respectively. Conversely, analysis of the IC
with watershed pourpoints resulted in the index being primarily driven
by distance (Fig. S2), disconnecting much of the area and not allowing
for analysis of local spatial patterns. For this reason, we proceed with
our remaining analysis solely through the lens of stream-target connec-
tivity as it more closely approximates hillslope coupling and (de)cou-
pling processes (Cavalli et al., 2013). Further, spatial stream-target IC
patterns have broad similarity with modeled erosion patterns (Fig. 4),
highlighting the importance of slope gradients and lengths, which we
recognize from our SDR analysis as influential to sediment transport.
Lastly, we ran the IC tool twice, once with sinks (e.g. reservoirs, lakes
shown in Fig. 1b) included in the analysis and another time with them
excluded (results not shown). We found that there were no substantial
differences in our lowland setting in overall structural connectivity with
or without the sink drainage areas excluded.

IC modeling with stream targets paired with high resolution 1-m
DEM data helped identify small scale rills and gullies as well as perma-
nent man-made structures like roads and ditches (Fig. 6). Qualitative
examination of the IC map demonstrates visual clarity of how roadways
and urbanized surfaces are highlighted in the medium to high regime of
connectivity as visible in northern Mill Creek and southern Cedar Creek.
Further, the high-resolution IC-channel analysis was able to define flood
plain areas as low connectivity. Furthermore, while pourpoint analysis
is useful in mountainous areas with steep gradients (e.g. Cavalli et al.,
2013; Tiranti et al., 2018), pourpoint analysis in our lowland watersheds
(average slopes < 5°) results in high connectivity only near the target
point. Unlike mountainous areas, which are driven primarily by natural
processes, urbanizing areas can have anthropogenically augmented
areas of connectivity distal to the watershed pourpoint and as such
channel targets serve as a more accurate proxy for connectivity. The im-
portance of selecting the correct sink target has shown to in other set-
tings, such as in the case of road-drainage network intersections
where roadways trap upslope material (Llena et al., 2019). In lowland
agricultural settings as well as urban it may be necessary to specifically
target channelized flow paths to gain an accurate representation espe-
cially at smaller spatial extents as seen in Calsamiglia et al. (2018).

It is important to note that IC is only a measure of structural connectiv-
ity, related to the arrangement of topographic features, and not a measure
of functional connectivity, which would include the effects of dynamic
processes that vary through space and time (Najafi et al., 2021). In this
study, perturbations in system processes due to urbanization, such as in-
creased capacity for runoff leading to small scale topographic changes, are
unaccounted for due to the limitations in assessing only structural con-
nectivity. Indian Creek, the most urbanized watershed, has relatively
few areas extremely high IC due to the slope-driven nature of IC despite
Indian Creek having the highest overall mean IC and sediment delivery
(Fig. S3). Incorporation of process-based functional connectivity in this
area could allow for the understanding of temporal and spatial evolution
of urbanizing landscapes through examination of changes in storm event
runoff and subsurface flow path (Husic et al., 2020). To extend the present
work further and overcome the limitations of just analyzing structural
connectivity, tools such as the probability of connectivity developed by
Mahoney et al. (2018) could be incorporated into the analysis. The prob-
ability of connectivity concept combines structural and functional con-
nectivity with the use of hydrologic models, such as SWAT, to assess the
spatial and temporal variation in system components and processes dy-
namics (Mahoney et al., 2020a, 2020b). For our study, the primary objec-
tive was to obtain spatial representation of connectivity with easy to use
and access tools rather than computationally demanding models. Thus,
we did not perform functional connectivity analysis in this study although
it an area of work that would further elucidate sediment processes in the
studied watersheds.
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A comparison between our watershed-scale connectivity proxy,
SDR, and our main geospatial index, IC, were examined to understand
trend patterns related to urbanization and sediment connectivity. SDR
and IC, were positively related at the five sites (R = 0.78, p < 0.05)
with the highest SDR and IC in the most urbanized watershed
(Fig. S3). SDR and IC have been linked in recent literature (Hamel
etal, 2017; Zhao et al., 2020), but we find investigation in their linkages
lacking, particularly in the context of urbanization and high-resolution
modeling. Our linkage of a watershed-scale connectivity measure de-
rived from in-stream monitoring data and RUSLE modeling (SDR)
coupled to geomorphometric connectivity analysis (IC) provides a po-
tential opportunity to estimate sediment conveyance in watersheds
with only high-resolution DEM data availability (Meusburger et al.,
2010; Cavalli et al,, 2013). We partially attribute the IC-SDR relationship
to landscape changes, which occur at a rapid time scale compared to
natural geologic settings due to the removal of vegetation cover, the in-
troduction of livestock and construction tracks, and development of
housing and transport facilities. These changes create concentrated
flow pathways which increase sediment transport capacity (Cavalli
et al.,, 2013; van der Waal and Rowntree, 2018), resulting in larger
values of IC (via continuous pathways to stream targets) and SDR (via
reduced likelihood of temporary storage). This coupling appears to be
stronger in more anthropogenically-impacted watersheds. We show a
strong relationship between two independently derived connectivity
indices and highlight how anthropogenic land use may control this
relationship.

4.3. Sediment erosion and connectivity linkages

4.3.1. Erosion-Connectivity Mapping

The Erosion-Connectivity Biplots (ECBs) were an effective tool for vi-
sualizing the linkages and distributions of erosion and connectivity at
the watershed-scale (Fig. 7). For normalized erosion, each watershed
produced an exponential distribution bound by a value of zero. On the
other hand, normalized IC distributions were right-skewed and, except
for Cedar Creek, were slightly bimodal with a distinct smaller peak at
higher IC values. Using the Jenks natural breaks algorithm to bifurcate
the distributions, we were able to integrate the kernel distribution
masses contained within each of the four identified quadrants: E-C =
high erosion, high connectivity; E-c = high erosion, low connectivity;
e-C = low erosion, high connectivity; and e-c = low erosion, low
connectivity.

First, we investigated coupled erosion and connectivity, i.e., locations
where the relative importance of both coincide and are either high
(E-C) or low (e-c). For all watersheds, the bulk of land (59 to 68%)
was in the e-c quadrant (Table 3), indicating that most of the study
area is poorly erodible and poorly connected. Conversely, only 4 to 6%
of watershed area was in the E-C quadrant, indicating that a small frac-
tion of land is both highly erodible and highly connected. Thus, loca-
tions where erosion and connectivity are coupled constitute 64 to 72%
of watershed area, but only a small fraction (4 to 6%) of that coupling
contributes significantly to sediment transport. On the other hand,
(de)coupled erosion and connectivity, i.e., locations where the relative
importance of erosion and connectivity contradict (e-C or E-c), consti-
tuted the remaining 28 to 36% (Table 3). Of that remaining fraction,
most (27 to 34%) was in the e-C quadrant with only a small amount
(1.5 to 2.5%) in the E-c quadrant. In summary, areas with high erosion
(E-C and E-c) make up 6 to 9% of the land area whereas locations with
high connectivity (E-C and e-C) make up 31 to 39% of watershed area.
These results indicate that more of the study area is well-connected
than it is well-erodible, suggesting that erodibility of the landscape is
a controlling factor of sediment transport in our study area.

Erosion-Connectivity Maps (ECMs) assisted in visualizing the spatial
variability in erosion and connectivity linkages as determined by the
ECBs (Fig. 8). Broadly, spatial ECM patterns are closely aligned with to-
pography indicating that positive erosion-connectivity coupling is
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Fig. 7. Erosion-connectivity biplots (ECBs) across the five-watershed showing each field site (n = 35) as determined by the RUSLE and IC models. The marginal univariate plots indicate the
distributions of all data points for erosion and connectivity per watershed: (a) Blue River, (b) Kill Creek, (c) Cedar Creek, (d) Mill Creek, and (e) Indian Creek. Dashed lines indicate the
location of the Jenks natural breaks. Red dots indicated field site labelled with site number matching Fig. 8. Quadrant symbology: E-C = high erosion, high connectivity; E-c = high erosion,
low connectivity; e-C = low erosion, high connectivity; and e-c = low erosion, low connectivity. (For interpretation of the references to colour in this figure legend, the reader is referred to

the web version of this article.)

driven by landscape variability. Our ECM analysis suggests that most lo-
cations distal to higher order stream targets are both poorly connected
and poorly erodible. However, not all near-stream areas are erodible,
even if they are highly connected. Cedar Creek has the most potential
for coupling of sediment erosion as it has the highest E-C proportion
of all watersheds at 6.1% largely due to the high gradients and slope
lengths near the primary stream corridors. On the other hand, Indian
Creek has the second lowest E-C percentage potentially because of an-
thropogenic influences on the topography limit the length of fields for
generating large amounts of surficial erosion as modeled by RUSLE. In-
deed, the magnitude of the LS factor broadly agrees with the proportion
of E-C land in a watershed due to the high likelihood of high slopes and

Table 3

Analysis of the percent of each watershed's total area falling within an erosion-connectiv-
ity quadrant. Results are presented as the mean (4-10) from twenty-five Monte Carlo re-
alizations. Table symbology: E-C = high erosion, high connectivity; E-c = high erosion,
low connectivity; e-C = low erosion, high connectivity; and e-c = low erosion, low
connectivity.

Watershed E-C E-c e-C e-c

Blue River 52 +£20 1.7 £ 20 34.1 +£ 2.0 59.0 + 2.0
Kill Creek 40 +£ 14 204+ 14 282 + 13 65.7 +£ 1.4
Cedar Creek 6.1+ 16 19 +£13 316 £ 1.6 603 £ 1.3
Mill Creek 6.0 + 2.0 25+ 17 313 £ 20 602 + 1.7
Indian Creek 43 + 14 1.5+ 23 26.6 + 1.5 67.7 £ 2.4
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lengths of fields coinciding with proximity to the primary stream corri-
dor(s). Topographic features are indirectly related to land use through
the altering of landscapes due to urbanization creating steeper sloping
areas for urban area drainage. Further, roadways, ditches, and road-
stream interactions in urbanized settings have been shown to be drivers
of IC (Llena et al., 2019), which our results also show. To gain an im-
proved understanding of how urbanization impacts the distribution of
pathways, it would be helpful to have multiple LiDAR surveys over a pe-
riod of many years to assess the change in connectivity networks over
time as rills and ditches may form and develop new drainage networks
(Lu et al., 2019; Zhao et al., 2020).

Our ECM analysis highlights that the coincident spatial location of
topographic features that foster highly coupled erosion and connectivity
are relatively rare (<6%; Fig. 8) but produce the most highly sensitive
pathways, which disproportionately contribute sediment to down-
stream loading. For example, E-C quadrant areas are hot spots of erosion
and our modeling indicates that 374-4% of all watershed erosion occurs
in this 4 to 6% of watershed area. Recent physically-based hydrologic
and sediment modeling also indicates the sensitivity of these relatively
rare pathways to not only the magnitude of sediment delivery
(Mahoney et al., 2020a), but also the timing of arrival (Mahoney et al.,
2020b). Mahoney et al. (2018) found that even on the wettest day of
the year, only 13% of the watershed area was connected to transport
with that number dropping to 2% for the average rainfall event. Further,
Mahoney et al. (2020b) found that these sensitive pathways are always
important for transport irrespective of the rainfall depth, indicating that
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Fig. 8. Coupled erosion-connectivity map (ECM) showing the location of watershed pour points, field assessment sites (n = 35), streamlines used as targets for the index of connectivity
analysis, delineated sink drainage areas, and quadrant analysis results. Legend symbology: E-C (red) = high erosion, high connectivity; E-c (green) = high erosion, low connectivity; e-C
(blue) = low erosion, high connectivity; and e-c (grey) = low erosion, low connectivity. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)

identification of where these sensitive pathways occur is an important
first step in managing them as they are not rainfall-dependent. Our
ECM analysis provides a quick tool for this identification by integrating
easy-to-implement analyses like the empirical RUSLE model and
SedInConnect IC application. Other methods for this determination are
temporally resolved but require physically-based numerical modeling,
which must be calibrated with extensive data (e.g. Mahoney et al.,
2020b). One reason that sensitive pathways are spatially constrained
to fewer locations is because of the high likelihood of blockages (i.e.
flow and sediment impedances, such as buffers, barriers, and blankets)
to cause (dis)connectivity in the sediment cascade (Fryirs, 2012; Wohl
et al., 2019). Because the IC metric is intrinsically linked to the flow
pathway that a sediment particle would travel to the nearest sink,
it integrates the possibility of these blockages to cause disconnec-
tion. However, as we will discuss in the next section, which includes
our field assessment, the IC does not resolve these blockages entirely
even with the use of high-resolution microtopography. This study
provides a method for combining RUSLE and IC in a new ECM tool
to identify coupling and (de)couplings of sediment production and
transport to aid in management and understanding of watershed
sedimentation.

4.3.2. Field assessment of erosion-connectivity

The average field assessment scores from our 35 sites, were 78 for
erosion (ES) and 67 for connectivity (CS) (out of a maximum score of
150). While there were areas of agreement between the geospatial
model and field assessments, field results indicate that current model-
ing tools (i.e. RUSLE and IC) need further refinement. Geospatial model-
ing results correctly predicted the field-observed intensity of erosion
51% of the time and connectivity 37% of the time. Connectivity performs
worse as discontinuities to the sediment cascade (e.g. buffers, blankets,
and barriers; Fryirs, 2012) are not explicitly incorporated into the IC
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formulation. This point is detailed more in the following paragraph
where, for each of the four quadrants (E-C, E-c, e-C, e-c), we explore a
site where the model accurately predicted field conditions and another
site where it did not, and we explore discrepancies in predicted vs ob-
served processes.

Fig. 9a shows an instance of strong agreement between model and
field assessment for E-C (ES: 95, CS: 85) as steep slopes, visible rills
and gullies, and exposed sediment sources at the site presented clear
evidence of erosion processes and sediment transport with observed
pathways overlapping with the model. Fig. 9b presents disagreement
between the model and field assessment for E-C (ES: 70, CS: 55)
where connectivity and erosion processes were not observed near the
stream target due to flat slopes combined with dense vegetation buffers.
Fig. S4a presents strong agreement between methods (ES: 95, CS: 50)
for E-c with visible sediment erosion in the form of a gully combined
with localized observed deposition. Disagreement between methods
(ES: 95, CS: 90) for E-c (Fig. S4b) indicated under representation of con-
nectivity for site 35 as transport pathways in the form of rills could be
observed leading to subsurface drainage. Fig. S5a represents verification
between model and field approaches (ES: 80, CS: 90) for e-C as visible
pathways leading to an anthropogenic channel were observed,
matching model output, while also observing lack of sediment sources
in the area leading to less visible erosion. Disagreement between
methods for e-C are seen in Fig. S5b (ES: 60, CS: 80) as the model over-
represented connectivity near the stream target for site 18 with a dense
vegetation buffer with no visible formation of pathways or sediment re-
moval. Lastly, strong agreement between methods (ES: 70, CS: 45) for e-
c areas was seen in a residential flood plain showing little erosion and
heavy presence of deposition from surrounding areas (Fig. S6a).
Fig. S6b represents disagreement between model and field approaches
(ES: 90, CS: 85) for e-c by underestimating erosion and connectivity as
visible construction equipment tracks showed the formation of rills
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Fig. 9. Field assessment results for two E-C sites with modeled high erosion and high connectivity. (a) Site #3: a small gully in Cedar Creek. (b) Site #23: a heavily vegetated plain next to a
channel in Cedar Creek. Each left panel represents geospatial model output with a white graphic that represents the field of view in the corresponding field assessment, located in the right

panel.

with exposed sediment for erosion as well as connection to subsurface
pathways.

The use of high-resolution data (i.e. 1-m in our model allowed for
better reflection of microtopography and the landscape ability to accu-
mulate water (Mahoney et al., 2018), thus we could observe exact ero-
sion pathways in the field and the model leading to better agreement to
real-world observations. Mahoney et al. (2018) further discusses this
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point by stating that low-resolution DEMs always overestimate connec-
tivity and were supported by Cavalli et al. (2013) who found that high
resolution data has the biggest impact on model accuracy. Additionally,
high resolution impacts modeling related to urbanization as roadside
channels can be resolved and thus increase erosion and connectivity
simulated (Zhao et al., 2020). Lowland areas may be particularly sensi-
tive to the effects of microtopography as high-sloping areas may be

Field Assessment
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Fig. 10. Erosion and connectivity linkages as assessed by ECM model predictions and field validations at thirty-five sites. Modeled and field assessed scores are normalized between 0 and 1
for visual comparison. Each plot includes a linear regression with a 95% confidence interval. Model predictions indicated highly de-coupled erosion and connectivity dynamics for our sites.
However, field assessments of the same locations show that erosion and connectivity were significantly coupled (p < 0.05), highlighting that present modeling tools underrepresent

erosion and connectivity linkages.
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relatively uncommon, but when they do occur, they tend to dispropor-
tionately contribute to sediment erosion and transport (Gay et al., 2016;
Cossart et al., 2018), thus highlighting the need to represent them well.

Consequently, our field assessment also produced discrepancies
when compared to model predictions and indicated that erosion and
connectivity are more coupled in the field than models would suggest
(Fig. 10). These discrepancies were largely due to the limitations in
RUSLE and IC analysis, including how erosion-susceptibility, particularly
land cover, and flow path blockages were represented in their respec-
tive models. Additionally, the discrepancies can be explained through
the absence of hydrologic driven processes such as runoff due to precip-
itation as functional connectivity was not incorporated into this model.
Recall that we purposefully selected our 35 field sites to span all four
erosion-connectivity quadrants in the ECBs so that there would be no
relation in modeled erosion and connectivity (R> = 0.08, p = 0.09;
Fig. 10). If the model perfectly simulated field conditions, we would ex-
pect there to also be no relation during our field assessment; however,
we find that our ECM map (constructed from RUSLE and IC results) un-
derestimates the field-observed relation of erosion and connectivity (R?
= 0.44, p < 0.05; Fig. 10). Regarding erosion prediction, the generaliza-
tion of land cover causes issues regarding modeling as each land cover
had multiple variations within it affecting modeled detachment accu-
racy (Soohoo et al., 2017). As NLCD data were relatively coarse (30-
m), particularly compared to DEM resolution (1-m), improvements to
modeling could include more on-the-ground assessment of land
cover. Small features such as parks, agricultural fields, and construction
sites have the potential for higher sediment erosion compared to larger
aggregated surfaces and these small features may be masked under a
coarse resolution, potentially underestimating erosion.

Regarding connectivity prediction, the IC model does not entirely re-
solve riparian or anthropogenic buffers, barriers, and blankets to the
sediment cascade (Fryirs, 2012; Heckmann et al., 2018). These block-
ages cause (dis)connectivity and reduce the ability for sediment trans-
port especially in areas located close to stream targets. The limitations
of buffer presence can be resolved to some extent through the imple-
mentation of the relative smoothness index in the IC calculation,
which accounts for impedance by utilizing Manning's n and has proven
effective in forested watersheds (Zanandrea et al., 2020). Further limita-
tions related to the topographic modeling is that urban area subsurface
pathways, such as stormwater drainage, are unaccounted IC targets
which create transverse pathways that likely increase IC values, but
are not captured from DEM data alone (Calsamiglia et al., 2018). This
latter argument can be remedied as flexibility in the SedInConnect tool
allows for any type of target to be added, including subsurface flow
pathways if their accurate mapping exists. Another limitation related
to unexpected observations is the temporal aspect of urbanization. In
urbanizing areas, construction is an ongoing process which creates ex-
posed tracks in sediment that concentrate runoff and aid in the develop-
ment of rills and gullies producing increased erosion and sediment
pathways (Marchamalo et al., 2016) that are not represented after
the date when LiDAR data is recorded. To better analyze structural
connectivity, the use of temporal variations needs to be incorporated
with the spatial variability (Mahoney et al., 2020a, 2020b). Further-
more, IC was not a good estimate for inter-rill areas as they are
more difficult to detect as the microtopography can be altered in a
short time span under high sediment fluxes (Lu et al., 2019). While
the ECM tool could be improved by the inclusion of subsurface flow
paths and better discretization of microtopographic features, it
nonetheless provides useful estimates of the spatial linkages of ero-
sion and connectivity.

5. Conclusions
Overall, this study aimed to understand how sediment erosion and

connectivity were linked across an urbanizing lowland landscape and
led to the following conclusions:
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1) RUSLE modeling results show that for lowland urbanizing water-
sheds topography is the primary driver of erosion with the largest
uncertainties associated with urban C factor representation. We rec-
ommend assessing uncertainty in RUSLE predictions with Monte
Carlo sampling of C factors as urban influence is not well-defined
in the RUSLE literature. Additionally, RUSLE has limitations when ap-
plied to larger watersheds related to the scaling of processes, which
could be improved by utilizing more physically-based erosion
models operating at finer timescales.

2) ICresults indicate that for lowland areas streamlines are more ap-
propriate sink targets than watershed pourpoints as they more
accurately represent sediment pathways. The studied connectiv-
ity metrics, IC and SDR, were positively related and generally indi-
cated that the most anthropogenically-impacted watersheds
were also more efficient at conveying sediment from source to
sink. However, we assessed only static/topographic connectivity
and more work is needed to see if urban watersheds remain
more effective conveyors during dynamic conditions as assessed
by functional connectivity.
We developed an Erosion-Connectivity Mapping framework that
provides a new method for spatially quantifying coupling and (de)
coupling of sediment erosion and connectivity using publicly avail-
able datasets. Modeling results indicate that erosion is more likely
to be the limiting factor in sediment transport, as opposed to con-
nectivity, as there are generally more locations that are well-
connected to hydrologic transport but resistant to erosion. However,
since RUSLE does not account for channelized erosion and IC only
considers structural connectivity, additional investigation is needed
to understand this relationship. The ECMs performed with relative
accuracy as validated by field assessment and bridge the gap in the
literature between the RUSLE and IC methodologies.
Field assessment of the ECMs indicated that geospatial modeling
underpredicts how closely related erosion and connectivity are in
the field because geospatial models do not resolve all buffers, bar-
riers, and blankets in the sediment cascade. We suggest that future
improvements be made to RUSLE and IC models to consider this
greater coupling more explicitly.
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