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ABSTRACT 

The present study explores the transport rate of urban pollutants by using snow 

melting processes by road salts and electrical conductance in the Indian Creek and 

Tomahawk Creek in Kansas. We adopted a cross-correlation method to explore which water 

quality parameter would be more indicative for snowfall and melting processes, and 

compared their relationships to the runoff estimation from the ArcSWAT model. The cross-

correlation analysis shows that the peak of electric conductance in the creeks trails snowfalls 

was with average lags between 2 and 3 days. The ArcSWAT model shows that the effect of 

snowmelt on the electric conductance in the creeks was almost immediate with the average 

transport rate of 2.4 days and the snowmelt had negative impact on the turbidity. Also, the 

present study showed that in average times of concentration for the farthest point of the sub-

basin to the main streams was 48 minutes. The findings will measure the transport rate of the 

pollutant’s entrance into the water system and will allow water managers to implement better 

pollution control strategies during snow events. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Non-point source (NPS) pollution in urban areas is an important topic due to the 

accelerated construction pace of new buildings and urban infrastructure and the relevance for 

the study of water quality problems. The estimation of NPS requires a considerable amount 

of information and knowledge regarding hydrological techniques. Contrary to point source 

pollution that is already identified and located, NPS is more complicated due to its diffuse 

and unknown origin. According to the United States Environmental Protection Agency 

(2017), “NPS pollution generally results from land runoff, precipitation, atmospheric 

deposition, drainage, seepage or hydrologic modification. NPS pollution, unlike pollution 

from industrial and sewage treatment plants, comes from many diffuse sources. NPS 

pollution is caused by rainfall or snowmelt moving over and through the ground. As the 

runoff moves, it picks up and carries away natural and human-made pollutants, finally 

depositing them into lakes, rivers, wetlands, coastal waters and ground waters”.  

Also, NPS pollution may include oils, chemicals, sediments, bacteria, nutrients, 

fertilizers, and pesticides among other elements and it is consider a major water quality issue 

(United States Environmental Protection Agency, 2017). The Clean Water Act established in 

1987, Section 319 is a Federal amendment that helps states and local agencies to centralize 

NPS efforts and resources of multiple types to support the development of NPS projects and 

programs (United States Environmental Protection Agency, 2017).  
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NPS pollution models show that rainfall and runoff are common variables for water 

quality evaluation in the modeling techniques. Techniques such as constant concentration, 

spreadsheets, statistical, rating curve or regression, and buildup/washoff are used to predict 

NPS pollution (Donigian Jr. and Huber 1991). The constant concentration technique assumes 

a runoff with same pollutant concentrations. Spreadsheets technique is simply the automation 

of hydrological analysis that uses precipitation depth and rainfall coefficients, usually 

varying with land use, as basis for predictions.  Statistical technique assumes an event mean 

concentration (EMC) with log normal distributions and derived runoff volumes and it is used 

mostly for quantitative studies of urban runoff. Rating curve or regression technique is 

simply a regression analysis that establishes the relationship between concentrations and 

volumes. Buildup and washoff technique is a concept built upon the bases of accumulation of 

sediments and pollutants that produce runoff during precipitation events. All these previous 

techniques are well applied as screening tools that can be implemented in the models 

(Donigian Jr. and Huber, 1991). 

The effect of snowmelt salts on urban hydrologic systems has been widely study in 

the past. The majority of the current ice melters have salt as the main component. It is not a 

surprise; salt lowers the freezing point of the water which makes the snow to become liquid 

much faster than the natural process. Hem (1992) and Christensen, Jian and Ziegler (1999) 

suggested that in the ideal situation well-defined relations between dissolved solids and 

specific conductance may increase the concentration of constituents such as chloride, which 

is a chemical almost always present in the waters exposed to snow melt water. Hence, the 

presence of high concentrations of chlorides increases the conductivity of the waters 

(Peinado-Guevara et al., 2012). According to Wenner, Ruhlman, and Eggert (2003), more 
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than 2 years test between conductance and health of streams concluded that specific 

conductivity shows the quality of streams; this technique was used to detect impaired streams 

within the nearby locations. Among physical and chemical parameters, specific conductivity 

is a variable that gives an indication of streams water quality. The specific conductivity may 

lead to conclusions that affect whether we can classified the water as poor or good; high 

specific conductivity indicates pollution (Wenner, Ruhlman and Eggert 2003). 

Although several studies have been created around the surface runoff and the time of 

entrance of pollutants into the water system, little have been known about the effects of 

snowfall and the implications of snow melting in the hydrological system in urban areas. The 

transport of contaminants in urban areas is the most important factor to evaluate, however it 

is essential to take into account how much and how fast runoff would be flowing into a basin. 

1.2 Research Objectives 

 

The main objective is to develop a computational model of urban hydrologic system 

for the urban water quality using snowfall events in the Indian Creek and Tomahawk Creek. 

It is fundamental to research the time of entrance of the chlorides or other constituents due to 

the salt compounds applied to the urban surface during snowfall. 

The initial hypothesis is that watershed characteristics at a basin level are spatially 

correlated to water quality, and snow melting is correlated to physical factors that accelerate 

the introduction of pollutants into the basin. The positive spatial correlation could help to 

identify human activities that significantly contribute to water contamination, identify areas 

at risk, and promote management practices to reduce non-point and point source pollution. 

Snow data may be a good source of meaningful information that the present research will 

rely on. 
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1.3 Study Area: Indian Creek Basin 

 

The Indian Creek Basin is located in the northeast section of the state of Kansas and 

the northwest section of the state of Missouri, including one portion of the east of Johnson 

County in Kansas and another portion of the southeast of Jackson County in Missouri. The 

majority of the basin, with 92% of the area, is located in Johnson County and the other 

portion of the basin, with 8% of the area, is located in Jackson County. The area contains the 

Indian River Basin, of which main streams are Indian Creek, Tomahawk Creek, Dyke 

Branch, and James Branch. The present research focuses on the Indian Creek and Tomahawk 

Creek. The study area is of approximately 47,128 acres (73.64 square miles). 

 

Figure 1. Location of the study area – Indian Creek Basin. The study area is divided by two 

States KS and MO. Base maps from (ESRI Data Maps 2016) and (USGS NHD Dataset 

2016). 
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The area of study has a midwest climate, with very hot and humid summers and very 

cold winters. According to the National Oceanic & Atmospheric Administration (NOAA), of 

which station is located in the Kansas City Downtown Airport, the average annual mean 

temperature was 57.2 (°F) from 1997 to 2016. Also for these past 20 years, the average 

maximum temperature was 102.4 °F in the period from the end of July to the beginning of 

August as the warmest days, and the average minimum temperature was -0.4 °F in the period 

from the end of December to the end of January as the coldest days. The average number of 

days with maximum temperatures below or equals 32 °F was 21.5 days. The average 

precipitation was 37.9 inches, and the average extreme maximum precipitation per day was 

3.33 inches. For the period of 1997 to 2010 the average snowfall was 11.2 inches with the 

maximum values of 22.0 inches in 1997 and 18.0 inches in 2007. Finally, the average 

maximum snowfall per day was 3.1 inches with the maximum values of 5.5 inches in 1997 

and 4.5 inches in 2009 (See appendix A). The location of the study area has relatively flat 

terrain with the elevations ranging between 761.07 and 1,109.67 feet above sea level. 

According to the National Land Cover Dataset (NLCD) (2011) developed by the 

United States Geological Survey (USGS), the majority of the land is in a low, medium or 

high intensity urban development areas or urban open space such as golf courses, comprising 

about 92.6% of the basin. The rest of the area is comprised by hay/pasture, forest, and 

herbaceous with 5.5% of the total basin area, cultivated crops occupying 1.5% of the area, 

wetlands occupying 0.23%, and open water at last with barely 0.13% of the total basin area. 
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Figure 2. Land cover/Land use raster map depicts an approximate of 92% of land within 

urban developed areas (NLCD 2011). 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Urban Non-point Source Pollution 

Urban non-point pollution is a topic very well known in scientific communities. 

Many studies have been made around the urban activities and the deterioration of the streams 

by mostly non-point sources of contamination (Basnyat et al., 2000; Brett et al., 2005; De 

Oliveira, Pinheiro Santos and Maillard, 2013; Maillard and Pinheiro Santos, 2008; Mitchell, 

2005). The previous studies considered that land cover/land use (LULC) changes played a 

crucial role on the impairment of urban streams. The LULC determines the level of 

roughness in the surface, in a way that forest surfaces decrease the runoff rate, whereas urban 

surfaces increase it (De Oliveira, Pinheiro Santos and Maillard, 2013). Some authors such as 

Basnyat et al. (2000), Brett et al. (2005), De Oliveira, Pinheiro Santos and Maillard (2013), 

and Maillard and Pinheiro Santos (2008) consider the creation or adjustment of buffer zones, 

which are protection zones with the riparian vegetation around the streams. To delineate the 

buffer zones, we can perform the reclassification of LULC in order to improve the accuracy 

of the zones (Basnyat et al., 2000). Mitchell (2005) showed that one of the most efficient 

ways to reduce pollution in urban areas is the development of sustainable drainage systems in 

consolidated urban spaces.  

Many recent studies started to adopt GIS and remote sensing technologies due to 

analytical and spatial visualization capabilities. These visualization systems help to identify 

diffuse contamination through the analysis of different parameters such as nitrate, 

phosphorus, and turbidity (Brett et al., 2005; De Oliveira, Pinheiro Santos and Maillard, 
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2013;Maillard and Pinheiro Santos, 2008). Mitchell (2005) suggested a concentration model 

called Event Mean Concentration (EMC), which is the total mass load of a chemical yielded 

from the storm, divided by the total storm discharge. This model was crossed reference with 

an annual runoff model taking into account different land use changes at sub-basin levels 

with the maximum unit area load. Basnyat et al. (2000) suggested that there is a strong 

relationship between nitrate concentrations and different land use types. Two key elements 

for their study was the delineation of a basin through Digital Elevation Model (DEM) and the 

development of an equation to calculate the efficiency of buffer zones: 

𝐵𝑏

𝐵𝑟
= (

𝑛𝑏

𝑛𝑟
)

0.6

(
𝐿𝑏

𝐿𝑟
)

2

(
𝐾𝑏

𝐾𝑟
)

0.4

(
𝑆𝑏

𝑆𝑟
)

−0.7

(
𝐶𝑏

𝐶𝑟
) 

                       (1) 

where Bb refers to the proposed buffer zone and Br refers to the ‘reference zone’; Bb/Br is the 

‘buffer zone’ effectiveness ratio; n is the Manning roughness coefficient (Engman, 1986); L 

is the buffer zone width (feet or meters); K is the saturated hydraulic conductivity (in./h or 

cm/h); S is the slope (%); and C is the soil moisture storage capacity (in. or cm) (Basnyat et 

al., 2000). It is important to note that Equation (1) does not take into account the 

precipitation, whereas Mitchell (2005) considers the rainfall for the calculation of the annual 

runoff volume. Other studies consider the influence of slope and roughness within the runoff 

calculation process as shown in De Oliveira, Pinheiro Santos and Maillard (2013). In De 

Oliveira, Pinheiro Santos and Maillard (2013), the base for the evaluation is the Manning 

equation that is directly proportional to slope (i) and inversely to the roughness (n) and the 

substituted equation to determine the influence of i and n in the overland flow time is: 

𝑇 = (𝑛 x
𝐿

𝑅𝐻
2 3⁄

x 𝑖1 2⁄
) 

                  (2) 
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where T is the overland flow time (s); RH is the hydraulic radius (m); and L is the travel 

distance. 

As mentioned in Brett et al. (2005), forest lands help stabilize nutrients by its 

transition to urban areas contributing to the contamination in the urban water system. In one 

of their conclusions turbidity shows high concentrations during winter seasons, whereas 

Maillard and Pinheiro Santos (2008) suggested that high turbidity values are shown in wet 

season, which is around January in Brazil. 

In general, LULC is a big determination factor for the study of non-point source 

pollution in the urban area. Nitrate, phosphorus, and turbidity are the main parameters to 

analyze, and the use of GIS and remote sensing technologies help understand, visualize, and 

analyze physical factors contributing to the non-point source pollution and its spatial location 

in the urban areas. 

2.2 Water Quality 

Watershed management is part of the efforts to maintain and improve water quality in 

streams. In the studies of water quality, it is crucial to take into account spatio-temporal 

changes of physical, chemical, and physiographic characteristics that may be present in the 

dynamics of the basin (Xu et al., 2012). It is necessary to recognize water quality variations 

and the climate variations that affect the amount of pollutants in the streams (Bhat, et al. 

2014). Hall and Ellis (1985) investigated water quality deterioration with the urbanization 

itself, suggesting that there is a direct relationship between the increase of impervious surface 

and the proliferation of the building construction business. Hall and Ellis (1985) also 

suggested that one of the factors to influence water quality is the changes in the precipitation 

regime that may regulate the water network design and the runoff of pollutants. Chang 
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(2008) showed that the greater the population the more the nutrients and non-point source 

pollutants into urban streams. 

Gazzaz, et al. (2012) presented a water quality index (WQI), which is a numeric value 

that compares water quality variables and the water quality standards. The combined sewer 

overflow (CSO) on streams have been studied as well, due to its influence in water quality 

once the system is oversaturated, specially, in heavy rainfall events. Even, et al. (2007) 

presented PROSE, a model to simulate the storm water and waste water flow through the 

CSO. Xu, et al. (2012) and Chang (2008) introduced the concept of seasonal variation to 

define water quality parameters through the Mann-Kendall's Test. Davis, Traver and Hunt 

(2010) provided important concepts of stormwater control measures (SCMs) such as green 

roofs, vegetated swales, grassed filter strips, bioretention, and pervious pavements. 

2.3 Snow and Times of Concentration 

The relationship between runoff and snowmelt in urban areas is not well known so 

far. Many studies focus on the snowmelt characteristics rather than how the snowmelt would 

affect urban streams (Kronis 1978). Peterson, et al. (2005) studied snowmelt characteristics 

under alpine temperature. Martinec, Rango and Major (1983) developed a snowmelt-runoff 

model to explore potential factors to affect snowmelt rates such as precipitation, runoff 

coefficient, and topographic variations including peaks and valleys. 

The estimation of overland flow and runoff requires conditions of surface roughness, 

rainfall intensity, and topographic slope and its length (Wong, 2005; Almeida et al., 2014; 

Wong and Li, 1998). Urban land surface produces faster runoff and less time of retention. In 

the same way, channels in the urban area change the flow characteristics by increasing 

overland flow and producing the same effects by reducing the surface roughness. 
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Topographic slope is very important in a runoff process; it will determine the transport rate 

of urban debris that would affect water structures such as storm sewers and street ditches 

(Cronshey, et al. 1986). Peters (2009) showed the relationship between the increase of 

specific conductance and the amount of chloride in the urban streams, but did not considered 

the use of deicing salt during snowfall. Finding the effect of deicing salt will provide an 

interesting insight of urban runoff and NPS pollution. 

2.4 Statistical Analysis of Water Quality 

Many statistical methods have been adopted for the analysis of water quality 

parameters. Yang and Jin (2010) used the traditional ordinary least square (OLS) method to 

relate basin characteristics with water quality. Cluster analysis (CA) or factor analysis (FA) 

are also widely used to determine spatio-temporal variations of water quality (Xu et al., 2012; 

Bhat et al., 2014; Shrestha and Kazama, 2007). Cluster analysis helps group data based on 

the differences and similarities regarding the characteristics of surface water quality 

(Shrestha and Kazama, 2007). Correlation coefficient is an effective statistical number to 

determine the relationship between two or more water quality parameters (Khatoon et al., 

2013; Noori et al., 2010; Wilkison, Amstrong and Hampton, 2009). There are innumerable 

statistics to assess a hydrological model; the most common ones are Nash-Sutcliffe efficiency 

(NSE), Pearson’s coefficient of determination (R2), Slope and y-intercept, Persistence model 

efficiency (PME), Percent bias (PBIAS), and Daily root-mean square (DRMS) (Gupta, 

Sorooshian and Yapo, 1999; Jeong et al., 2010; Moriasi et al., 2007). Each of them has 

something specific to contribute to the calculation or evaluation of model performance. 

According to Gupta, Sorooshian and Yapo (1999), NSE is a measure of the relative degree of 

the residual variance or noise to the variance of the flows or observed data. Moriasi et al. 
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(2007), it shows the 1 to 1 line agreement between observed and simulated values. It 

indicates the performance of the model relative to a standard; being 1 an indicative of 

optimal model performance (Jeong et al., 2010). NSE is also defined as a calibration 

measurement to evaluate the precision of the models (Moriasi et al., 2007). 

2.5 Geospatial Analysis of Water Quality 

With the advancement of the spatial technology several tools and methodologies have 

been used to study runoff rates and discharge of water pollutants. Fitzgerald, et al. (2012) and 

Di Luzio, Arnold and Srinivasan (2005) conducted covariance analysis to clarify 

relationships between basin characteristics and pollutants discharge, and identified the source 

of pollutants. Besides the statistical methods, Easton et al. (2010), Kundzewicz and 

Krysanova (2010), Chinh et al. (2011), Yang and Jin (2010), Mouri, Shinoda and Oki (2012), 

and Chang (2008) addressed the importance of land cover change in urban water quality. The 

urbanization changes the LULC by destroying natural conditions of streams (Cruise, Laymon 

and Al-Hamdan 2010).  The level of urbanization may depend upon stakeholders or 

landowners and its effect should be taken into account (Wilcove, 2014; Babbar-Sebens et al., 

2015). 

The spatial resolution of basin model plays a key role in the implementation of runoff 

assessment. Kundzewicz and Krysanova (2010), Di Luzio, Arnold and Srinivasan (2005), 

and Mouri, Shinoda and Oki (2012) showed that a basin level modelling provides good 

resolutions for water quality and runoff analysis. 
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2.6 Hydrological Modeling 

The use of models for contamination is well known. Authors such as Koç (2010), 

Erturk et al. (2010), and Even et al. (2007), employed one-dimensional modelling techniques 

to measure contaminants. These modelling techniques use the concept of “mass balance” to 

determine levels of infiltration, evaporation, evapotranspiration, temporal storage, and runoff. 

The benefits of these models are that they can identify active elements in stream pollution 

and determine the degrees of influence of those elements in impaired streams, so that they 

can evaluate possible effects of future socio-economic developments. 

Multiple software applications or add-ins for watershed modelling have been 

developed along the years improving in this way the one-dimensional modelling approach to 

more complex models. Among others are the Watershed REstoration using Spatio-Temporal 

Optimization of REsources (WRESTORE) (National Science Foundation, 2014), MIKE SHE 

(Systeme Hydrologique European) (Jeong et al., 2010, Sandu and Virsta, 2105), Watershed 

Characterization and Modeling System (WCMS) (Strager et al., 2010), Agricultural 

Policy/Environmental Extender (APEX) (Golmohammadi et al., 2014), Topography Based 

Hydrological Model (TOPMODEL) (Beven,1997; Devi, Ganasri and Dwarakish, 2015; 

Peng, Zhijia and Fan, 2008), Better Assessment Science Integrating Point and Non-point 

Sources  (BASINS) (Mohamoud, Sigleo and Parmar, 2009; United States Environmental 

Protection Agency, 2016), and SWAT ( Arnold, Moriasi et al., 2012; Daggupati et al., 2015; 

Debele, Srinivasan and Parlange, 2008; Kim et al., 2012; Maharjan et al., 2013; Malagó et 

al., 2017; Malunjkar et al., 2015; Sheshukov et al., 2011; Tian et al., 2012; Wang et al., 2016; 

Yang, Liu, et al., 2016; Zhang, Srinivasan and Van Liew, 2008). Some authors have written 

about the advantages and disadvantages of diverse hydrological models and concluded that 
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accuracy of the models depends upon the characteristics of the basin such as area, the 

simplicity of the set-up, the spatio-temporal resolution of the streamflow, and the type of 

analysis (Devi, Ganasri and Dwarakish, 2015; Golmohammadi et al., 2014). WRESTORE is 

a web-based application design to support the visualization of watersheds and their 

management components adding a runoff component with limited capabilities. MIKE SHE is 

a European Hydrological System Model developed by the Danish Hydraulic Institute (DHI), 

and it is a spatial model type that requires a lot of computation time and is not ideal for 

development of hydrological models with long records in time and large watersheds (Jeong 

et al., 2010; Sandu and Virsta, 2105). However, MIKE SHE is a fully integrated hydrological 

model capable of assessing the hydrological changes product of land cover, land use changes 

and it has been largely used in watershed studies. 

 

Figure 3. Schematic representation of the conceptual components in MIKE SHE - semi-

distributed overland flow and linear reservoir groundwater models (Sandu and Virsta 2105). 
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Additional add-in for ArcGIS used by Strager et al. (2010), the WCMS, uses a spatial 

component dedicated to aim the analysis process and the prioritization of locations for 

remediation purposes. APEX is a watershed simulation application administered by the 

Texas A&M Agrilife Research. It has a wide range of hydrological and climate components 

and it can evaluate relationships among them (Golmohammadi, et al. 2014). APEX touches 

multiple topics such as climate predictions, hydrological cycles, land use administration, soil 

type modeling, and conservation (Texas A&M AgriLife Research 2016). There are multiple 

advantages that this software offers, however the lack of an extensive peer review articles 

bank is a decisive item. TOPMODEL is a hydrological software and a conceptual model that 

simulates all the components of the hydrological cycle through a basin. It was developed 

more than 40 years ago. The topography of the watershed is considered to generate runoff 

models. Among its advantages are the “simplicity and the possibility of visualizing the 

predictions of the model in a spatial context”, turning it into a physically based model as well 

(Devi, Ganasri and Dwarakish, 2015; Beven, 1997; Peng, Zhijia and Fan, 2008). The model 

is simple because it uses a topographic index, however, it diminishes the flexibility of the 

basin dynamics (Beven, 1997). BASINS, developed by the USEPA, has been used widely for 

hydrological model development, integrating basin data for the whole USA continent, 

modeling tools, and GIS. The study of the effects of urbanization in the water quality and 

quantity can be well determined by the BASINS system, as demonstrated by Mohamoud, 

Sigleo and Parmar (2009). BASINS is a handy tool to model total maximum daily loads 

(TMDLs) and to reference non-point sources, however, the creation of snowmelt predictions 

has not been yet verified. 
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Figure 4. BASINS download module; this is one of the main modules of the software to 

download hydrologic, geological, and soil datasets (United States Environmental Protection 

Agency 2016). 

The advantage of this software is the capacity to work independently from any 

commercial GIS platform allowing at the same time the migration to different formats. Also, 

the capacity to interact with different datasets such as the National Hydrography Dataset 

(NHD),  USGS water stations, and National Land Cover Data among others, in  just one 

module as shown above (United States Environmental Protection Agency, 2016). SWAT is a 

multi-spectral hydrological package, it has been used for many authors to solve multiple and 

complex hydrological and environmental issues. Dissolve Organic Carbon (DOC) is a 

fundamental component of a water natural system and hence it has been studied to 

understand the relationship between the natural balance and the environmental effects over 

stream flow. SWAT helped understand the relationship and determined the considerable 

elements impacting DOC balance such as streamflow, drainage area, and percentage of land 

cover (Tian et al., 2012). In contrast with Sheshukov et al., (2011), soil information is not a 

relevant data for the accurate analysis of DOC as found also by Kim et al., (2012) in its 
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research for the analysis of different datasets resolution in the accuracy of a SWAT model. In 

Sheshukov, et al. (2011), soil resolution is an important factor in hydrological models and 

ArcSWAT was a facilitator by the integration with the Soil Survey Geographic database 

(SSURGO) and the development of a tool using Visual Basic as a frame language. Soil 

erosion and GIS resolution for datasets is also a very good example of SWAT flexibility. 

Kim, et al. (2012) demonstrated that the runoff and the transport of suspended sediments 

generated by the SWAT model is directly connected to the quality and resolution of the GIS 

datasets entered into it. In Kim’s final conclusion, the 30 m DEM was the one that produced 

the best model results in the SWAT outputs, however no relevant improvements were 

obtained by combining different resolutions of soil and land use, this reiterates the findings 

of the previous authors regarding, mainly, about soil datasets. SWAT can be defined in 

different temporal events, ranging from years, days, hours, and sub-hours scales. One of the 

hourly studies, Debele, Srinivasan and Parlange (2008), demonstrated that the disaggregation 

in daily runoff may improve the accuracy of SWAT models by implemented an enhanced 

SWAT variation for this purpose. 

Different studies such as Yang, Liu et al., (2016) and Maharjan et al., (2013), have 

been developed regarding the temporal use of SWAT models into hourly or sub-hourly time 

lapses; some conclusions appointed that the hourly lapse is better than the sub-hourly lapse, 

even though the sub-hourly time lapse improves the prediction of high flows in comparison 

with daily SWAT models (Jeong et al., 2010). As we suggested previously, SWAT is a very 

versatile hydrological package that can be used in watersheds with scarce data availability, as 

demonstrated by Malunjkar et al., (2015), reaching high efficiency values in the calibration 

and validation cycles. Similarly, with the methodology for time lapses used by Malunjkar et 
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al., (2015), developing the SWAT model in different years for calibration and validation 

processes. Arnold,  Moriasi et al., (2012), Daggupati et al., (2015), and Zhang, Srinivasan 

and Van Liew (2008) suggested that is a good practice to split the data in two different 

groups, one for calibration and the other for validation. These two processes are the core and 

the success of the hydrological model; it may be a very convoluted task. However, innovative 

ways for calibration and validation have been proposed by adding into the equation the 

calibration of crops, the traditional streamflow, sediments, and the incorporation of total 

nitrogen and total phosphorus for both processes in studies regarding nutrient flows into a 

basin (Malagó, et al. 2017). Few SWAT studies have been focused on evaluation of snowfall 

and snowmelt processes and parameters to increase the precision of the model using the snow 

variables. SWAT calculates snowmelt simulations by the study of the threshold temperatures, 

and in the case of snowpacks the calculation is given by the following equation: 

Tspi = Tspi-1(1-TIMP) + TaiTIMP 

       (3) 

 

where TIMP is the snow temperature hysteresis factor that implicitly accounts for snowpack 

density, water content, and exposure; Tspi and Tspi-1 are the snowpack temperature on the 

current day (i) and the previous day (i-1); and Tai is the mean air temperature on day 1 

(Wang et al., 2016). Wang et al., (2016) demonstrated the sensitivity of certain parameters 

and the insensitivity of others and concluded that it was a complex process and the complete 

certainty regarding the snowmelt model was not obvious and it required further investigation. 

SWAT is a resourceful solution for a wide spectrum of hydrological and 

environmental issues in the real world and it has been utilized for many years to predict 

runoff behaviors, water quality analysis, and entrance of pollutants into water systems. In 
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more recent years, the GIS-integrated model, ArcSWAT has transformed SWAT into a 

robust and dynamic modeling software. 
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CHAPTER 3 

METHODOLOGY 

3.1 Data Collection 

The present research consists of three main components; the first one is the collection 

and analysis of initial datasets, the second one is the exploratory statistical relations among 

different physical and climatology datasets (shown in chapter 4), and the third one is the 

creation of a hydrological model to verify the findings during the statistical process. During 

the initial process, the selection of the weather and water stations was defined. The stations 

were selected based on two criteria: spatial locations and datasets availability. We adopted 

six water stations administered by the USGS, nine weather stations administered by the High 

Plains Regional Climate Center (HPRCC), and two weather stations administered by the 

University of Missouri Extension (UMOEXT). To see the initial analysis of all stations, go to 

appendix B. Table 1 shows the overall final selection of weather stations. 

Table 1. Climate stations for the ArcSWAT model. 

NAME STATE LATITUDE LONGITUDE 
BEGIN 

DATE 

END 

DATE 
STATION TYPE PARAMETERS 

OLATHE 3.3 ENE (KSJO0006) KS 38.9049 -94.7569   Current HPRCC MXT,MT,P,S,SD 

OLATHE JOHNSON CO EXEC 

AP (KOJC) 
KS 38.85 -94.73917 2000-7-31 Current HPRCC MXT,MT,P,S,SD 

OLATHE JOHNSON CO AP 

(KIXD) 
KS 38.83167 -94.88972 2000-10-6 Current HPRCC MXT,MT,P,S,SD 

OTTAWA (OTTK1) KS 38.62 -95.28 1985-3-28 Current HPRCC MXT,MT,P,W,ST,SR,RH,ET 

OVERLAND PARK S 87TH 

(OPSK1) 
KS 38.9533 -94.7142 2000-1-4 Current HPRCC P,S,SD 

SILVERLAKE (a147399) KS 39.07 -95.77 1985-3-28 Current HPRCC MXT,MT,P,W,ST,SR,RH,ET 

KANSAS CITY DOWNTOWN 

AP (KMKC) 
MO 39.12 -94.6 2000-8-15 Current HPRCC MXT,MT,P,S,SD 

KANSAS CITY WATTS MILL 

(KCWM7) 
MO 38.9464 -94.6047 2006-4-23 Current HPRCC P,S,SD 

LEES SUMMIT MUNI AP 

(KLXT) 
MO 38.96 -94.37 2001-10-26 Current HPRCC MXT,MT,P,S,SD 

BRUNSWICK (UMOBRUN) MO 39.412667 -93.1965 2008-12-1 Current UMOEXT W,SR,ET 

GREEN RIDGE (UMOGREEN) MO 38.621147 -93.416652 2008-12-1 Current UMOEXT W,SR,ET 

Average Relative Humidity (RH), Average Soil Temperature at 10 centimeters (ST), Evapotranspiration (ET), 

Global Solar Radiation (SR), Maximum Temperature (MXT), Minimum Temperature (MT), Precipitation (P), 

Snowfall (S), Snow Depth (SD), Winds (W) 
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To assign the most accurate value of snow to a certain sub-basin the Thiessen Method 

was used. It is well known that this technique should not be used if the terrain is 

mountainous. This technique creates polygons of influence based on the distance or weight to 

each of the stations within the basin; one polygon belongs to just one station (Fetter 2001). 

This information is essential when executing calculations within each of the sub-basins 

produced by SWAT in the Indian Creek. Figure 5 shows the water stations and seven of the 

weather stations administered by the HPRCC, and the Thiessen polygons indicating the 

distribution of the sub-basins related to the four weather stations, which are within the area of 

interest. 

 

Figure 5. Thiessen polygons of influence based on climate stations within the watershed 

(AIMS 2014), (ESRI Data Maps 2016), (USGS NHD Data 2016). 
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       Additional weather stations were selected due to the limitations of spatial coverage. 

All the stations that are more than 20 miles away from the study area provide the datasets for 

potential evaporation/evapotranspiration, relative humidity, solar radiation, and wind. 

 

Figure 6. Distant weather stations containing ET, RH, SR, and W parameters (AIMS 2014), 

(ESRI Data Maps 2016), (USGS NHD Data 2016). 

 

       Once the weather and water stations were defined, the next step was to check the data 

quality and time interval. 

Table 2. Time lapse and parameters availability by station. 

 

DISCHARGE CONDUCTANCE TURBIDITY PRECIPITATION PET REL HUMIDITY SOLAR RAD TEMPERATURE WIND

USGS STATIONS 6893300
12/1/08 - 

2/13/15

5/18/11 -         

7/9/13

5/18/11 - 

7/5/13

6893350
7/9/11 - 

2/13/15

5/17/11 -         

8/4/13

5/17/11 - 

8/4/13

6893390
12/1/04 - 

2/13/15

12/1/04 -       

9/23/14

12/1/04 - 

9/23/14

385446094430700
6/17/11 - 

7/17/13

6/8/11 -           

7/9/13

6/8/11 - 

5/15/13

385520094420000
6/14/11 - 

7/17/13

5/17/11 -         

7/9/13

5/17/11 - 

7/10/13

385608094380300
6/13/11 - 

7/11/13

5/17/11 -       

7/10/13

5/17/11 - 

7/10/13

HPRCC STATIONS KCWM7
12/1/08 -        

2/13/15

KOJC
12/1/08 -        

2/13/15

12/1/08 -    

2/13/15

OPSK1
12/1/08 -        

2/13/15

KSJO0006
12/1/08 -        

2/13/15

KIXD
12/1/08 -    

2/13/15

KLXT
12/1/08 -     

2/13/15

KMKC
12/1/08 -    

2/13/15

PARAMETERS
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After the analysis of the parameters, the development or scout for a high resolution 

DEM was necessary. The DEM was essential to produce a good result in the process of sub-

basin delineation.  The Automated Information Mapping System (AIMS) had the best DEM 

at resolutions of 3 feet (0.9411 m). A comparison between two different resolutions is shown 

in the figure below. 

 

Figure 7. Comparison between 1 m DEM vs 30 m DEM (AIMS 2014), (USGS NHD Data 

2016). 

Because this is an urban landscape it is fundamental to define not just the stream path 

but also the roads that are routing the path of liquids and oils. The 1 meter DEM is a bare 

land DEM, so it means it has no canopy or building heights, so it can follow more accurately 

DISCHARGE CONDUCTANCE TURBIDITY PRECIPITATION PET REL HUMIDITY SOLAR RAD TEMPERATURE WIND

HPRCC STATIONS OTTK1
12/1/08 - 

2/13/15

12/1/08 -     

2/13/15

12/1/08 - 

2/13/15

12/1/08 - 

2/13/15

A147399
12/1/08 - 

2/13/15

12/1/08 -     

2/13/15

12/1/08 - 

2/13/15

12/1/08 - 

2/13/15

UMOEXT STATIONS UMOBRUN
6/13/13 - 

2/13/15

12/1/08 - 

2/13/15

12/1/08 - 

2/13/15

UMOGREEN
6/4/13 - 

2/13/15

12/1/08 - 

2/13/15

12/1/08 - 

2/13/15

PARAMETERS
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the real earth’s surface to improve the accuracy of the hydrological model. The DEM was 

improved by a process in which certain holes in the surface were filled out through a 

geospatial analysis method called ‘fill’, which basically fills sinks in a raster dataset to 

remove small imperfections on the data. Also, it was improved by a process that smooths the 

edges of a raster called ‘filter’ (Environmental Systems Research Institute (ESRI) 2016). 

ArcScene® by ESRI, helps visualize the differences in elevations even when the differences 

are not big or abundant. ArcScene has 3D visualization capabilities that allows creation of 

surfaces, rotation, augmentation, and other visual effects manipulations. Figures 8 and 9 

show the DEMs before and after the fill and filter process created by ArcScene® showing the 

3D effect with a vertical exaggeration of x10. 

 

 
Figure 8. DEM before the filling and filtering process (AIMS 2014), (USGS NHD Data 

2016). 
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Figure 9. DEM after the filling and filtering process (AIMS 2014), (USGS NHD Data 2016). 

Notice that the low elevation changed from 758.355 ft to 761.069 ft whereas the high 

elevation stayed the same; this is due to the filling process. 

Besides the DEM, a soils and land use rasters were obtained from the USGS datasets. 

The soil raster was computed or merged because it had two parts, one for the Kansas portion 

of the basin and another for the Missouri portion of the basin. The table below shows the 

datasets that were collected and analyzed to prepare the statistical analysis and the 

hydrological model. 

Table 3. Initial dataset’s source information. 

Dataset Format Source Organization Year 

Flowlines Vector NHD USGS - USEPA 2016 

Waterbodies Vector NHD USGS - USEPA 2016 

Land Cover/Land Use Raster NLCD USGS 2011 - 2012 

DEM Raster AIMS AIMS 2014 

Soils Raster NRCS USDA 2012 - 2013 

HPRCC Weather Stations Vector HPRCC HPRCC 2015 - 2016 

UMOEXT Weather Stations Vector UMOEXT UMOEXT 2015 - 2016 
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Dataset Format Source Organization Year 

USGS Weather Stations Vector USGS USGS 2015 

Aerial Imagery Raster NAIP USDA 2014 

Golf Courses Vector AIMS AIMS 2014 

Counties Vector TIGER USCB 2011 

      National Hydrography Dataset(NHD) 

      United States Environmental Protection Agency (USEPA) 

      National Land Cover Database (NLCD) 

      Natural Resources Conservation Service (NRCS) 

      National Agriculture Imagery Program (NAIP) 

      Topologically Integrated Geographic Encoding and Referencing (TIGER) 

      United States Census Bureau (USCB) 

 

The flowlines, waterbodies, and golf courses were used to adjust the initial land 

cover/land use raster and improve the accuracy of the hydrological model. 

3.2 Hydrological Model Development 

SWAT is a hydrological model with an extensive number of parameters; it has been 

developed and successfully applied for more than 25 years to help understand the water 

cycles and land management practices. ArcSWAT is an add-in extension developed to 

integrate the SWAT capabilities with the power of GIS analysis. Initially, the hydrological 

tool was created to assist in the convoluted task of assess the consequences of land 

management practices in the soil and water (Dile, et al. 2016). The software allows 

introduction of multiple topographic, physical, and chemical parameters. It is a multi-purpose 

and sophisticated scientific tool that requires a substantial number of parameters to simulate 

the characteristics and complexities of the basins. One of the main keys of success in the 

analysis is the quality and quantity of the data entry process. In order to improve the initial 

modeling, it is essential to have calibration and validation processes with two different time 

steps. Figure 10 shows a general flow chart of the ArcSWAT processes.  
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         Figure 10. General flowchart of ArcSWAT as developed in this study. 

SWAT employs variety of physical and climate parameters to predict runoff. SWAT 

runoff is determined by the SCS Curve Number estimated from DEM, soil data and land use 

among other elements. The ingredients of the runoff are determined by the following 

equation: 

𝑄𝑠𝑢𝑟𝑓  =
(𝑅𝑑𝑎𝑦 − 0.2𝑆)2

(𝑅𝑑𝑎𝑦 + 0.8S)
 , S = 25.4(

1000

𝐶𝑁
 − 10) 

       (4)   

where, Qsurf is the accumulated runoff or rainfall excess (mm H2O), Rday is the rainfall depth 

for the day (mm H2O) that varies spatially due to changes in soils, land use, and 

management, CN is the Curve Number for the day (Kim, et al. 2012). 
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Figure 11. Input and output data structure for SWAT. This figure depicts the main input 

datasets, the running SWAT process, and the temporal output (Kim, et al. 2012). 

In Debele, Srinivasan and Parlange (2008), two methods of disaggregation were used: 

univariate assuming that there are no more than one rainfall event during a single day, and 

multivariate taking into account no only the datasets but also its spatio-temporal distribution 

for the disaggregation approach. In the final outcome of the model, the hypothesis of the use 

of disaggregation methods improved the final results (Debele, Srinivasan and Parlange 

2008). 

The research was developed over the ESRI software ArcGIS Advanced License, 

version 10.3.1 for Desktop and the ArcSWAT version 2012.10.0.9. Several processes were 

developed to obtain a hydrological model with satisfactory accuracy for future predictions. 

The hydrological data allow analyzing the basin at catchment levels. In this development, 

various water balance parameters such as velocity, drainage surface area, slope, vegetation 

index, soil, land use, imperviousness, evapotranspiration, filtration, rainfall, and runoff are 

simulated. 

The amount of equations to analyze the transport times of pollutants may be 

overwhelming, but it is important to compare results and utilize the equation that better fits 
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the characteristics of the basin. (Wong 2005), (Almeida et al., 2014), (Wong and Li 1998)  

have dedicated investigations about the assessment of the time of concentrations in overland 

flow equations. Wong and Li (1998) suggested that there are two kinds of formulas, one that 

take into account the rain intensity and the other that does not. The study shows that the 

formulas employing the rainfall intensity as a parameter are more adjusted to the real values. 

Also, Wong and Li (1998) studied the effects of urbanization in the decrease of time of 

concentrations, assuming that the slope, roughness, and rain intensity are constant.  Wong 

(2005) has evaluated overland flow equations developed during the last 70 years by different 

hydrology studies and has determined the efficiency of the equations through the R2 function: 

𝑅2  = 1 −
Ʃ(𝑡𝑜𝑜 − 𝑡𝑜𝑒)2

Ʃ(𝑡𝑜𝑜 − 𝑡𝑜𝑚)2
 

 

       (5) 

 

where too is the observed overland time of concentration; toe is the estimated overland time of 

concentration; and tom is the mean of all the observed overland times of concentration. The 

more accurate and interesting equations are the equation of the United States Army Corps of 

Engineers’ (USACE) Formula (1954), the Kerby’s Formula (1959), and the Chen and 

Wong’s Formula (1993). 

USACE’s Formula 

𝑡𝑜 = (10.57 +
0.12

𝑆𝑜
) (

𝐿𝑜

30.48
)

0.55−(0.001
𝑆𝑜

⁄ )

   𝑖𝑛
−0.43 

       (6) 

where to (min) is the time of concentration overland, So (m m-1) is the overland slope, Lo (m) 

is length of overland flow, and in (mm h-1) is the net rainfall intensity. This equation was 

developed for concrete (typical urban surface) and in the assessment the R2 equals 0.94; the 

highest accuracy value among the other equations (Wong 2005). 
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Kerby’s Formula 

𝑡𝑜 = 1.45(𝑁𝑘𝐿𝑜 𝑆𝑜
0.5⁄ )0.467 

       (7) 

 

where to (min) is the time of concentration overland, Nk is the retardance coefficient, Lo (m) is 

the length of overland flow, and So (m m-1) is the overland slope. This equation is simple and 

represents one of the equations that do not use rainfall intensity as part of the components 

(Wong 2005). 

Chen and Wong’s Formula 

𝑡𝑜 = (
0.21(3.6 𝑥 106𝑣)𝑘𝐶𝐿𝑜

2−𝑘

𝑆𝑜𝑖𝑛
1+𝑘 )

1
3⁄

 

                         (8) 

 

where to (min) is the time of concentration overland, C=3 and k=0.5 are constants, 

v=0.874x10-6 m2s-1 for water at 26 oC, So (m m-1) is the overland slope, Lo (m) is the length of 

overland flow, and in (mm h-1) is the net rainfall intensity. The values for constants C and k 

are for the concrete and this equation gives better results for permeable and impermeable 

surfaces (Wong 2005). 

Additionally, some studies describe the equations with limitations of use by 

dependencies on source (rural or urban), areas, lengths, and steepness (Almeida, et al. 2014). 

In the Almeida’s study the equations for better adjustment in urban basins are the McCuen et 

al. Equation (1984), Carter Equation (1961), and Woolhiser&Liggett’s Equation (1967). 

McCuen et al. Equation 

𝑇𝑐 = 2.2535𝑖−0.7164𝐿0.5552𝑆−0.2070 
       (9) 

 

where Tc (h) is the time of concentration, i (mm/h) is the rainfall intensity, L (km) is the 

length of the main stream in the watershed, and S (m/m) is the mean steepness. Although the 
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area is recommended for basins of maximum 16 km2, it is originated from urban basins with 

moderate steepness ratio (Almeida, et al. 2014). 

Carter Equation 

 

𝑇𝑐 = 0.0977𝐿06𝑆−0.3 
     (10) 

 

where Tc (h) is the time of concentration, L (km) is the length of the main stream in the 

watershed, and S (m/m) is the mean steepness. Although the area is recommended for basins 

of maximum 20.72 km2, it is originated from urban basins with moderate steepness ratio and 

does not account for rainfall intensity (Almeida, et al. 2014). 

Woolhiser & Liggett’s Equation 

𝑇𝑐 = 7.3015 (
𝑛𝐿

𝑆0.5
)

0.6

   𝑖𝑛
−0.4 

     (11) 

 

where Tc (h) is the time of concentration, n (m-1/3s) is the Manning’s roughness coefficient 

(see appendix C), L (km) is the length of the main stream in the watershed, S (m/m) is the 

mean steepness, and i (mm/h) is the rainfall intensity. This equation does not have 

restrictions in area or steepness and it is based on the theory of kinematic wave which take 

into consideration constant rainfall intensity, large canals as flowing surfaces, and is suitable 

for overland flow with great surface runoff and lateral recharges (Almeida, et al. 2014) and 

(Miller 1983). 

The development of the hydrological model is the next step in the process. The very 

first step before the start of modeling was the project set-up. An mxd project was created over 

the ArcGIS interface with an option to create an initial mdb personal geodatabase to store 

vector data and an empty mdb personal geodatabase to store rasters and an mdb personal 

geodatabase for parameter setup. The overall work flow is shown in Figure 12. 
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Figure 12. ArcSWAT Model specific work flow developed during the study. 

      The systematic order of the hydrological model development was as follows: 
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3.2.1 Watershed Delineator 

       The first step was to develop a watershed that may be added by user or created from 

scratch by ArcSWAT system. The tool uses the Spatial Analyst extension of ArcGIS 

(Winchell, et al. 2013). In this study the watershed sub-basins delineation was created by 

using the high resolution DEM (3 feet – 0.914 meters), a high resolution streams dataset, and 

a pre-determined watershed. The DEM was converted to meters with the spatial projection 

NAD 1983 State Plane Kansas North FIPS 1501. In the delineation process more layers were 

created, they were a selected number of streams called Reach, Outlets for each of the sub-

basins, and Monitoring Points. Once the sub-basins were created, evaluation of them was 

performed. This is one of the many quality control (QC) stages in which the delineation of 

the sub-basins was evaluated. Basically, the process of evaluation was subjective to the 

number of sub-basins and the distribution and limits of each of them. The number of sub-

basins was controlled by the number of segments of the streams layer. After running three 

watershed delineation processes a final sub-basin scheme was chosen. The basin system 

comprises 35 sub-basins, 35 monitoring points or outlets, and 35 reach segments. At this 

point, waterbodies were taken into account to add into the process features such as reservoirs; 

fundamental for sub-basin parameter estimation. One of the main characteristics of this step 

was that every single sub-basin should have one and just one reach segment. The other 

important part of the step was to verify whether water outlets correspond to the location of 

the water stations, because this will minimize the spatial error when comparing the observed 

discharge and the simulated runoff. In this process, the resolution of the DEM was a key 

factor because too much resolution implies more system processing time. Figure 13 shows 

the final watershed sub-basins delineation with the reaches and outlets. 
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Figure 13. ArcSWAT Watershed and sub-basin model generated during the watershed 

delineation process (AIMS 2014), (USGS NHD Data 2016). 
 

3.2.2 HRU Analysis 

       The Hydrologic Response Units (HRUs) are sub-sections of the sub-basins that were 

defined by differences in land use, soils, and slope (Winchell et al., 2013). The first step in 

the process was the addition of the land use into the model. LULC is a raster with classified 

land uses of the basin and it is necessary to re-classify the LULC to map out the dataset with 

a look-up table pre-existent in ArcSWAT. Also, it was necessary to validate the land use with 

the help of waterbodies datasets, streams datasets, and a recent high resolution imagery; for 

this research the chosen imagery was 2014. Below is the chart of the reclassification. 
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Table 4. LULC reclassification. 

Land Use                        

(Raw Data) 

Description Land Use            

(Re-classified) 

Percentage Description 

11 Open Water 11 0.13 Open Water 

21 Developed, Open Space 21 21.80 Developed, Low Intensity/Open Space 

22 Developed, Low Intensity 22 46.63 Developed, Low/Medium Intensity 

23 Developed, Medium Intensity 23 17.99 Developed, Medium Intensity 

24 Developed, High Intensity 24 6.15 Developed, High Intensity 

31 Barren Land 31 0.04 Barren Land 

41 Deciduous Forest 41 2.45 Deciduous Forest 

42 Evergreen Forest 42 0.01 Evergreen Forest 

43 Mixed Forest      

52 Shrub/Scrub 52 0.04 Shrub/Scrub 

71 Herbaceuous 71 0.40 Herbaceuous 

81 Hay/Pasture 81 2.57 Hay/Pasture 

82 Cultivated Crops 82 1.56 Cultivated Crops 

90 Woody Wetlands 90 0.20 Woody Wetlands 

95 Emergent Herbaceuous Wetlands 95 0.04 Emergent Herbaceuous Wetlands 

  

As indicated in Table 4, this is an urban basin with approximately 92% corresponding 

to development areas.  

The second step was to add the soils information into the model. The soil data has 

multiple classifications depending on the State. Therefore, some soils in Kansas has no 

matching classification in Missouri and vice versa. In order to minimize the disagreement 

between states and reclassify the soils, the acquired soil information was compared to the 

ArcSWAT SSURGO database to find the most similar designation corresponding to the 

characteristics of the soils in Kansas and Missouri. The key for the search in the SSURGO 

database was the Map Unit Key (MUKEY). However, not always was possible to match the 

soils for both states. Figure 14 depicts the entire soil map for the whole Indian Creek Basin 

with some disconnections between States. 
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Figure 14. Soils structure for the Indian Creek Basin developed with a join tool for the KS 

and MO States (USDA 2012). 
 

   
 

Figure 15. Similarities and differences in SSURGO state database soils (USDA 2012). 

KANSAS MISSOURI 

1. MUKEY 
(766060) 

1. MUKEY 
(2521060) 

2. MUKEY 
(766049) 

2. MUKEY 
(2532046) 

3. MUKEY 
(2559440) 

3. MUKEY 
(2559440) 

4. MUKEY 
(1399845) 

4. MUKEY 
(1399845) 
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SSURGO is a reliable database developed for many years and is a representation of 

the characteristics of the soils with different physical aspects and properties (United States 

Department of Agriculture, Natural Resources Conservation Service, 2016). As a 

consequence, a comparison for four types of soil is shown in Figure 15, constituting an 

example of differences and similarities in both soil databases between Kansas and Missouri. 

The characteristics for each of the examples are as follow: 

Example 1 

Kansas 

MUKEY: 766060 

Map unit Name: Martin silty clay loam, 3 to 7 percent slopes 

Flooding Frequency: None 

Drainage Class: Moderately well drained 

Hydrologic Group: D 

 

Missouri 

MUKEY: 2521060 

Map unit Name: Greenton-Urban land complex, 5 to 9 percent slopes 

Flooding Frequency: None 

Drainage Class: Somewhat poorly drained 

Hydrologic Group: D 

 

Example 2 

Kansas 

MUKEY: 766049 

Map unit Name: Chase silt loam, occasionally flooded 

Flooding Frequency: Occasional 

Drainage Class: Somewhat poorly drained 

Hydrologic Group: D 

 

Missouri 

MUKEY: 2532046 

Map unit Name: Bremer silt loam, 0 to 2 percent slopes, occasionally flooded 

Flooding Frequency: Occasional 

Drainage Class: Poorly drained 
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Hydrologic Group: C/D 

 

Example 3 

Kansas and Missouri 

MUKEY: 2559440 

Map unit Name: Kennebec silt loam, occasionally flooded 

Flooding Frequency: Occasional 

Drainage Class: Moderately well drained 

Hydrologic Group: C 

Example 4 

Kansas and Missouri 

MUKEY: 1399845 

Map unit Name: Chillicothe silt loam, 2 to 5 percent slopes 

Flooding Frequency: None 

Drainage Class: Well drained 

Hydrologic Group: C 

As noticed in the previous cases, Examples 1 and 2 have different characteristics such 

as map unit name, slopes, drainage class, and hydrologic group. Also, Examples 3 and 4 have 

the same similarities in terms of map unit name, flooding frequency, drainage class, and 

hydrologic group.  

The third step was to create a slope raster to add it into the model. The base of the 

slope raster was from DEM. During the data entry, the system required the entrance of either 

single or multiple slopes, for this particular research three classifications were chosen: 

Slope 0 -3 

Slope 3 – 10 

Slope > 10 

The last step in the HRU Analysis was the overlay of the land use, soil, and slope 

layers. In order to represent the different HRUs for each sub-basin it was crucial to define 

thresholds to filter information that was no representative in the sub-basin and to minimize 
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the amount of non-significant HRUs. The thresholds used in this research were 10%, 10%, 

and 20%, respectively, for the land use, soil class, and slope. It meant that, if one sub-basin 

had a land use percentage over a sub-basin area of less than 10%, then, it was taken out of the 

calculations to create the HRUs for this particular sub-basin because it was not representative 

of that sub-basin. After the thresholds were defined and the overlay was created, the accuracy 

of the model increased due to the different combinations that may influence in the 

evapotranspiration and the runoff calculations (Winchell et al., 2013). The final result of the 

overlay was a HRU Report that follows the scheme below: 

 
 

Figure 16. Example of ArcSWAT HRU report scheme. 

The hydrological model generated, as a result of the previous analysis, a total of 783 

HRUs. 

3.2.3 Weather Analysis 

The weather analysis is a complex process that depends upon multiple parameters. At 

this point the hydrological model was divided in two time periods, one for the calibration of 

the model and the other for the validation of the model. For this study, we employed 
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precipitation, potential evapotranspiration, relative humidity, solar radiation, temperature, 

and wind speed as modeling parameters. Also, the time period for the calibration was from 

12/1/2008 to 5/15/2012 and the one for the validation was from 5/16/2012 to 2/13/2015. 

Datasets of the modeling parameters were formatted into the ArcSWAT formats, then the 

weather source database was chosen. This weather source database was a focal point and it 

was a require information to process the rest of the parameters already collected. The 

Cooperative Observer Program (COOP) administered through the National Weather Service 

(NWS) database “WGEN_US_COOP_1960_2010” was chosen because the time period was 

very wide and it had the greater amount of stations around the United States, with 18,072 

first order and second order climate stations (Winchell et al., 2013). After the database source 

was defined, the entry of the parameters was executed. 

Parameters to enter for the weather information were as follow: 

a. Rainfall data, it was entered in millimeters (mm) in a daily time step and calculated 

with the weather station dataset and the weather source database (see Table 2). 

b. Temperature data, it was entered in Celsius degrees (C°) in a daily time step and 

calculated with the weather station dataset and the weather source database (see Table 

2). 

c. Relative Humidity data, it was entered in fraction in a daily time step and calculated 

with the weather station dataset and the weather source database (see Table 2). 

d. Solar Radiation data, it was entered in megajoule per square meter per day 

(MJ/m2/day) in a daily time step and calculated with the weather station dataset and 

the weather source database (see Table 2). 
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e. Wind Speed data, it was entered in meters per second (m/s) in a daily time step and 

calculated with the weather station dataset and the weather source database (see Table 

2). 

3.2.4 Database Tables Generation 

       In this step different database tables were transferred to a central SWAT folder to 

manage the whole project input tables. Figure 17 shows the tables transferred to the central 

folder. 

 
 

Figure 17. SWAT database tables transferred to the main database. 

This is the standard transfer process from the shelf; the folder served as a collection 

point of the input tables that later will be transferred into a central SWAT database. The 

“Configuration File” contains the basic information for each of the sub-basins associating 

each of them to the respective file name and extension for sub-basin and route that will be 

created in the system. The “Soil Data” table was a table created for each of the HRUs; it 

contains physical characteristics of the soil present in the specific HRU. Figure 18 shows the 

scheme used for this type of dataset. 
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Figure 18. Example of ArcSWAT soil tables transferred. 
 

The “Weather Generator” tables show the information of the database chosen in the 

previous steps. The “Subbasin Data” table shows information such as area in square 

kilometers, latitude and longitude of the central point of the sub-basin, total HRUs, and the 

number of parameter records used within the sub-basin. Also the “Snow Data” table shows 

different parameters such as snowfall temperature (°C), snow melt base temperature (°C), 

melt factor for snow on June 21 (mmH2O/°C-day), melt factor for snow on December 21 

(mmH2O/°C-day), and snow pack temperature lag factor.  “HRU Data” table shows multiple 

HRU related characteristics such as average slope length, soil evaporation compensation 

factor (ESCO), and plant uptake compensation factor. “Drainage Data” table shows 

information such as effective radius of drains (mm), drainage coefficient (mm/day), pump 

capacity, and distance between two drain tubes or tiles (mm). “Main Channel Data” table 

refers to diverse properties of each reach within the sub-basin; it compiles physical 

characteristics of the channel affecting water processes. Some of the data related to the 

channel is the average width of main channel at top bank (m), depth of main channel from 

top of bank to bottom, average slope of main channel, and so forth (Arnold, Kiniry, et al. 

2012). 
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3.2.5 Run SWAT (Creation of Hydrological Model for Calibration) 

Once all the tables were transferred to the database, the next step was to setup and run 

the first SWAT Model Simulation. This simulation employed all the information coming 

from the central input database and the weather stations for prediction of the hydrologic 

processes in the watershed (see Figure 19 below). 

 

Figure 19. First set-up of ArcSWAT model simulation for calibration. 

It is highly recommended to divide the time period of the simulations in two portions. 

One time period will be used for calibration of the model and the second time period will be 

used for validation of the model. The first simulation was run from December 1st, 2008 to 

May 15th, 2012 and the results were given in a daily time step. One of the factors taken into 

account was the data condition such as  no data for a long time period,   highly skewed 

information for zero rain days, ’skewed normal’ rainfall distribution. Once the setup was 

done, the model creation was run to produce data outputs for the sub-basins, channels, and 

outlets. These outputs were the base for comparison between the observed data within the 

USGS water stations and the simulated data. A new simulation was created and the output 
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data was transferred to a new database through the “Read SWAT Output” option. SWAT 

produced a series of tables with relevant information; one of them was used to find the 

accuracy of the model. The “sub” and “vel” tables contain the runoff information and the 

channel velocity information needed to verify the accuracy of the model and the time period 

of snowmelt reaching the streams.  

Before any calculation was made, it was imperative to separate the simulated surficial 

runoff from the baseflow. Several methods have been developed to do this, however, for this 

study the Web-based Hydrograph Analysis Tool (WHAT) developed by Purdue University 

was chosen. High accuracy results can be reached for calibration or validation of 

hydrological models (Lim, et al. 2005). The equation used for flow separation was the 

corresponding to the Eckhardt digital filter as follows: 

b𝑡 =
(1 − BFI𝑚𝑎𝑥) x α + b𝑡−1 + (1 − α) x BFI 𝑚𝑎𝑥 x Q𝑡

1 − α x BFI𝑚𝑎𝑥
 

     (12) 

 

where bt is the filtered base flow at the t time step; bt-1 is the filtered base flow at the t-1 time 

step; BFImax is the maximum value of long term ratio of base flow to total streamflow; α is 

the filter parameter; and Qt is the total streamflow at the t time step (Eckhardt 2005). For this 

research, a BFImax of 0.80 was used. After the base flow was separated from the total runoff a 

surficial flow was found. 

For verification of the model accuracy, we employed the Nash-Sutcliffe Coefficient 

(NSE), and the percent bias (PBIAS) as suggested by (Jeong et al., 2010), (Moriasi et al., 

2007), and (Gupta, Sorooshian and Yapo 1999). The NSE was chosen because it represents 

the relative dimension between the residual variance and the measured data variance 

(Maharjan, et al. 2013), (Yang, Liu, et al. 2016), (Jeong, et al. 2010), (Saleh, et al. 2009), and 
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(Gupta, Sorooshian and Yapo 1999). The PBIAS was chosen because it represents the 

measurement of the tendency for over estimation or under estimation of simulated values 

compared with observed values, thus it is able to identify low quality model simulations 

(Jeong, et al. 2010), (Moriasi, et al. 2007), and (Gupta, Sorooshian and Yapo 1999). Results 

of the calibration model are shown in chapter 4. 

3.2.6 Python Script Development 

       The development of a Python script was needed to integrate the outputs coming 

directly from the ArcSWAT model into the NSE and PBIAS model validation. (see appendix 

D). The preparation of the data for NSE and PBIAS is very expensive and tedious; it requires 

a lot of time to organize manually. However, with this automation by the Python script the 

computation time reduced more than 90% of the time; on average each simulation process 

requires 40 hours manually while the Python script does 2.5 hours. This same Python script 

will be used again to calculate the accuracy of the validation model as well. The main 

processes are defined in the following steps: 

a. Variables Definition 

The first step was to produce a geodatabase non-spatial table with the USGS 

discharge data and its fields and to create another file geodatabase non-spatial table with the 

data coming from the module .sub in the SWAT model. The module contains all the data of 

the sub-basin, physical and weather analysis; it is classified by day in time and sub-basin in 

space. The information in the USGS non-spatial table was developed by splitting the 

equations in mathematical portions (see equations 14 and 15 in chapter 4). 
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b. Fragmentation and Calculation 

The second step was the dissolution of the data by the upstream sub-basins 

compounding the total area of the drainage to each of the USGS stations. In this step, the first 

transferring from the data coming from the hydrological model is produced. Also, the first 

calculations to organize the data by day and sub-basin are done here. Finally, the first 

calculation to find the accuracy of the model is developed; for this calculation NSE and 

PBIAS statistical methods were partially calculated. 

c. Final Integration 

The third step was the integration of all the statistical values for the data from each 

USGS station, into the central estimation of the NSE and PBIAS. 

3.2.7 Run SWAT (Creation of Hydrological Model for Validation) 

Once all the tables for the validation process were transferred to the database, the next 

step was to setup and run the SWAT Model Simulation. This simulation took all the data 

coming from the central input database and the weather stations, and predicted the 

hydrological processes in the watershed (see Figure 20 below). 

 

Figure 20. First set-up of ArcSWAT model simulation for validation. 
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The basic steps of validation is identical with the ones of calibration. The separation 

of the surficial runoff and the base flow was done with WHAT, and NSE and PBIAS were 

calculated. Results of the validation model are shown in chapter 4. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Cross Correlation Analysis 

We performed cross-correlation analysis to investigate statistical relationships 

between water quality parameters and meteorological parameters with time lag of response. 

The basic concept of cross correlation is to determine the dependency of two variables with 

the time lapse between one event and the other (J. C. Davis 2002). Its mathematical equation 

is the same with the general correlation coefficient calculations, but we have a series of pairs 

with different time lags.  

𝑅(ℎ) =
cov [1(𝑡), 2(𝑡 + ℎ)]

𝑠[1(𝑡)]𝑠[2(𝑡 + ℎ)]
 

     (13) 

 

where R(h) is the correlation at the time lag interval, h, cov [1,2] is the covariance between 

the variables 1 and 2, and s[1(t)] and s[2(t+h)] are the corresponding standard deviations of 

each variables 1 and 2 with the time lag h. We adopted two statistical programs: The 

Statistical Package for the Social Sciences (SPSS) IBM (2015) and WinSTAT for Excel. 

The initial analysis made with SPSS took into account 5 parameters as follows: 

 Specific conductance (water unfiltered, uS/cm at 25 ºC) 

 Evapotranspiration (Alfalfa base) 

 Relative Humidity (%) 

 Surface soil temperature at 4-inch depth 

 Snowfall (snow accumulation in inches) 
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The time period of SPSS analysis is from Dec 1st, 2010 to May 15th, 2011, 

corresponding to a total number of 166 records in days. 

Table 5 Correlation among parameters using SPSS. 

 

       Table 5 indicates that the regular correlation coefficient, which is cross correlation 

with zero lag time, among the 5 parameters is not conclusive; the maximum correlation 

coefficient is 0.587 between conductance and surface temperature. To prove the hypothesis 

that there would be positive correlation between conductance and snowfall with a certain 

time lag, cross correlation would be a better way to find their relationship. 
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Figure 21. Cross correlation chart between conductance and snowfall developed with SPSS. 

        Figure 21 shows the cross correlation between snowfall and conductance. The 

maximum time lag of 2-3 days in the upper confidence limit, indicates that once the snowfall 

event occurs on the ground, the deicing salts in the melting snow reaches the streams in 

around 2-3 days. However, there is a weak correlation as indicated by the correlation 

coefficient equals 0.252; the test is not conclusive and hydrological models should be created 

in order to confirm this subtle relationship. Another interesting relationship is between 

conductance and surface temperature. Figure 22 shows a moderate correlation of -0.587 with 

1-2 days of time lag between surface temperature and conductance, which indicates that a 

decrease in surface temperature leads to an increase of conductance. Also, it shows that the 

maximum correlation coefficient is around 1-2 lags or 1-2 days. 
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Figure 22. Cross correlation chart between conductance and surface temperature developed 

with SPSS. 
 

       The next analysis was to estimate the time lag of snowmelt by correlating snowfall 

and conductance in the Indian Creek. We adopted WinSTAT for this analysis. The analysis 

shows that for the majority of the years, the time lags are estimated to be 1-3 days. This 

finding concurs with the initial test developed with SPSS. Figures 23 through 25 are the cross 

correlation graphs for the downstream water station 6893390 in the Indian Creek. 
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Figure 23. Cross correlation chart between conductance and snowfall for water station 

6893390 for 2004, 2005, and 2006 respectively. 
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Figure 24. Cross correlation charts between conductance and snowfall for water station 

6893390 for 2007, 2008, and 2009 respectively. 
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Figure 25. Cross correlation charts between conductance and snowfall for water station 

6893390 for 2010, 2011, and 2012 respectively. 
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According to the previous statistical correlation for the most downstream water 

station, in the majority of the years the maximum correlation between conductance and 

snowfall was around 1 to 3 days with 78% of the values. However, there are some anomalies 

like the ones found in 2005 and 2010. Also, the table below shows that the majority of the 

lags are among 1, 2, and 3, being 2 the most predominant. Finally, due to the poor data 

quality, the majority of the 2011 values were out of these ranges and their correlation 

coefficients were very low, whereas the majority of the 2012 values were in these ranges and 

their correlation coefficients were a little higher overall. 

Table 6. Correlation coefficients and lags for the 2011 and 2012 period years. 

                                                                                                      
Station 2011 

(Lags) 

Correlation 

Coefficient 

2012 

(Lags) 

Correlation 

Coefficient 

6893390 1,2,3 0.53 2,3,4 0.361 

6893350 0,1,2 0.487 2,1,3 0.271 

385608094380300 10,13,12 0.105 2,3,1 0.43 

6893300 11,10,13  0.117 2,1,3 0.42 

385520094420000 5,6,4 0.187 2,4,1 0.425 

385446094430700 0,10,13 0.122 2,4,3 0.26 

 

The cross correlation analysis supports the hypothesis that the conductance would 

likely increase with snowfall after 1-4 days (mostly 2-3 days) due the deicing salts in the 

melting snow. 

4.2 Hydrological Model Results 

It was important to calibrate the model before proceeding with the validation process 

of the model (Arnold,  Moriasi et al., 2012). The idea is to adjust the simulation as much as 

possible to the observed discharge in cubic meters per day (cmd) values for each of the 

USGS stations used in this research. For calibration we adopted SWATCup, a hydrological 
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model calibration software, and the ‘Manual Calibration Helper’ module from the ArcSWAT 

model. The initial accuracy of the model was as follow: 

NSE = -0.04002 

PBIAS = -49.0258 

As shown above the accuracy was very low, taking into account that according to 

Moriasi, et al. (2007) satisfactory NSE > 0.0 and ideal NSE = 1, in the same way satisfactory 

PBIAS = +-25% and ideal PBIAS = 0. NSE equation used to determine the accuracy of the 

model was: 

𝑁𝑆𝐸 = 1 − [
∑ (𝑌𝑖

𝑜𝑏𝑠 − Y𝑖
𝑠𝑖𝑚)

2𝑛
𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠 − 𝑌𝑚𝑒𝑎𝑛)

2𝑛
𝑖=1

] 

     (14) 

 

where Yobs is the observed discharge, Ysim is the simulated discharge, Ymean is the mean of the 

observed records, and n is the total number of records. PBIAS equation used to determine the 

accuracy of the model was: 

𝑃𝐵𝐼𝐴𝑆 = [
∑ (𝑌𝑖

𝑜𝑏𝑠 − Y𝑖
𝑠𝑖𝑚) ∗ (100)𝑛

𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠)𝑛

𝑖=1

] 

     (15) 

 

Multiple combinations were performed before the model reached the satisfactory 

values. SWATCup helped to identify the parameters to be adjusted. Some of the sensitive 

parameters used to calibrate the runoff hydrological model were CN2, ESCO, EPCO, 

SURLAG, GWQMN, GW_DELAY, Alpha_BF, and REVAPMN as suggested in Maharjan, 

et al. (2013) and Yang, Liu, et al. (2016) studies. In the initial simulations applying different 

parameters and supporting the findings with SWATCup, some of the parameters such as 

EPCO, SURLAG, GWQMN, Alpha_BF, and REVAPMN were taken out due to low 

influence in the NSE and PBIAS statistical evaluation of accuracy. After a careful analysis 
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and SWAT Google Group readings, three parameters were chosen as follow, CN2, ESCO, 

and GW_DELAY. CN2, initial SCS CN II value, is part of the general management 

parameters of SWAT; this parameter was very sensitive for runoff calibration. ESCO, the 

soil evaporation compensation factor, is part of the HRU analysis of SWAT; this parameter 

was also very sensitive for runoff calibration. GW_DELAY, groundwater delay in days, is 

part of the Groundwater analysis in SWAT; this parameter was not very sensitive for runoff 

calibration. Finally, the calibration model best simulation was reached combining or 

modifying the CN2 and ESCO parameters. The values of the modification in comparison 

with the initial model are: 

Table 7. Parameters of modification for initial and final calibration models. 

Hydrological Model CN2 ESCO 

Initial No Modification No Modification 

Final Calibration Multiply by 0.65 Multiply by 0.9 

 

The model was calibrated after several attempts with different combinations of CN2 

and ESCO. The statistical evaluation of the initial model and the final calibrated model 

shows a great improvement and fits the acceptable levels of accuracy for both parameters. 

The statistical evaluation of accuracy for the initial and final calibration model is shown in 

the table below: 

Table 8. Statistical evaluation comparison for initial and final calibration models. 

Hydrological Model NSE PBIAS 

Initial Calibration -0.4002 -49.0258 

Final Calibration 0.183306 6.137551 
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The figures below show the final calibration time series curve of the observed and 

simulated discharges for all USGS chosen stations. Although the general pattern is of 

underestimation of the simulated values in higher discharges, the statistical evaluations and 

the time series curve represent a satisfactory accuracy according to the PBIAS values; being 

the USGS station 385520094420000 the most accurate with statistical evaluation NSE equals 

0.411464 and the USGS station 385608094380300 the most accurate with statistical 

evaluation PBIAS equals 4.305814. For the calibration model comparison, the time lapse 

used was from July 2011 to May 2012. The stations were organized from the most upstream 

to the most downstream in the Indian Creek and the station of the Tomahawk Creek. 
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Figure 26. Final calibration model at USGS stations 385446094430700, 385520094420000, 

and 06893300 respectively. 
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Figure 27. Final calibration model at USGS stations, and 385608094380300, 06893390, and 

06893350 respectively. 
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The validation of the model was the last step in the hydrological modelling process. 

Applying the same values found in Table 7, for the final calibration model, CN2 multiply by 

0.65 and ESCO multiply by 0.9; the model improved substantially as shown in Table 9. 

Table 9. Statistical evaluation comparison for initial and final validation models. 

Hydrological Model NSE PBIAS 

Initial Validation 0.6189 -53.0888 

Final Validation 0.77 -18.9050 

 

Note that the calibration resulted in a significant increase of the NSE statistic while 

the NSE increase was not significant from the validation.  The increase in the accuracy of the 

PBIAS statistic was as significant as the increase in the final model calibration. The general 

pattern was of overestimation according to the negative values of the PBIAS statistics; the 

statistical evaluations and the time series curve showed a satisfactory accuracy whatsoever; 

being the USGS station 385446094430700 the most accurate with statistical evaluation NSE 

equals 0.857836 and the USGS station 06893300 the most accurate with statistical evaluation 

PBIAS equals -13.2912. For the validation model comparison, the time lapse used was from 

July 2012 to March 2013. 



 

62 
 

 
 

 
 

 
 

Figure 28. Final validation model at USGS station 385446094430700, 385520094420000, 

and 06893300 respectively. 
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Figure 29. Final validation model at USGS stations 385608094380300, 06893390, and 

06893350 respectively. 



 

64 
 

        As presented in the previous paragraphs the final model accuracy was satisfactory, 

this means that the hydrological model does simulate the behavior of the water discharge. 

Taking into account the previous precedent, the results of the time lapse from snow melt to 

the closest reach for each sub-basin were found. Once the desired accuracy of the model was 

reached, the basis for calculation between snowfall and snow melt is consolidated. The table 

10 and 11 show final results for both stages; calibration and validation. 

Table 10. Final results for the calibration model. 

STATION (EVENT 1)  (EVENT 2)  (EVENT 3)  (EVENT 4) 
AVE 

DAYS 

385446094430700 1 2 5   2.7 

385520094420000 1 2 1   1.3 

06893300 1 2 1   1.3 

385608094380300 1 2 3 1 1.8 

06893390 2 3 1   2.0 

06893350 1 2 3 1 1.8 

    
FINAL DAYS 1.8 

 

Table 11. Final results for the validation model. 

STATION  (EVENT 1)  (EVENT 2)  (EVENT 3)  (EVENT 4)  (EVENT 5)  (EVENT 6)  (EVENT 7)  (EVENT 8) 
AVE 

DAYS 

385446094430700 2 4 3 3 5 3     3.3 

385520094420000 2 4 3 2 3 5 3   3.1 

06893300 2 4 3 2 3 5 3   3.1 

385608094380300 2 4 3 2 3 5 3   3.1 

06893390 2 3 2 1 2 5 1 3 2.4 

06893350 2 4 3 2 3 5 3   3.1 

        

FINAL 

DAYS 
3.0 

 

In these previous tables, each EVENT is defined by the subtraction of the first day of 

snowmelt occurrence minus the crest day of snowfall during the previous days. Figures 30 

through 33 show the time series curves of the snowfall and snowmelt calculated by the 

ArcSWAT hydrological model. 
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Figure 30. Snowfall and snowmelt calculation for calibration at USGS stations 

385446094430700, 385520094420000, and 06893300 respectively. 
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Figure 31. Snowfall and snowmelt calculation for calibration at USGS stations, 

385608094380300, 06893390, and 06893350 respectively. 
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Figure 32 Snowfall and snowmelt calculation for validation at USGS stations 

385446094430700, 385520094420000, and 06893300 respectively. 
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Figure 33. Snowfall and snowmelt calculation for validation at USGS stations, 

385608094380300, 06893390, and 06893350 respectively. 
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The difference between the calibration and validation final values can be explain by 

the difference in the surface temperature for both periods of time. As noticed in Figure 34, 

the temperatures from December 2012 to May 2013 period were much lower than the 

temperatures from December 2011 to May 2012. Also, as shown in the trend lines 

accumulation, by the middle of May, there is a difference in temperatures of around 18 

degrees. 

 

Figure 34. Temperature differences in Fahrenheit (ºF) between the calibration and the 

validation series. 

The calibration and validation accuracies are affected by the drainage area differences 

between the USGS stations and the model sub-basin areas. In general, the difference between 

both sets of data is of approximate 2.33% (see table below). 
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Table 12. USGS areas and model areas comparison. 

USGS STATION USGS Area 
(sqmi) 

Model Area 
(sqmi) 

Difference 

385446094430700 INDIAN C AT 119TH 
ST, OVERLAND PARK, KS 

14.2 14 1.41% 

385520094420000 INDIAN C AT 
COLLEGE BLVD, OVERLAND PARK, KS 

15.8 16.59 5.00% 

06893300 INDIAN C AT MARTY ST, 
OVERLAND PARK, KS 

26.6 26.03 2.14% 

385608094380300 INDIAN C AT 
INDIAN C PKWY, OVERLAND PARK, KS 

36.6 36.36 0.66% 

06893390 INDIAN C AT STATE LINE RD, 
LEAWOOD, KS 

64.17 63.97 0.31% 

06893350 TOMAHAWK C AT ROE AVE, 
LEAWOOD, KS 

20.5 21.41 4.44% 

Average Area Differences 2.33% 

 

Additional time could be added due to the overland flow of the snowmelt. The 

overland flow can be calculated from the most distant part of the sub-basins from any of the 

streams, and this is called ‘time of concentration’ (Fetter 2001). However, the additional time 

found was just for the overland flow, starting travel time on channel/stream is assume to start 

in the day that snow melt is beginning. In order to get the most distance hydraulic point in the 

sub-basins, visual observation and analysis was the first approach. Once the previous step 

was completed, GIS analysis was performed over the ArcGIS platform by converting the 

boundary of the sub-basins into points drawn for every vertex and by assigning geodesic 

distance values to a point, from the line stream until the chosen one. Four distant points were 

calculated and analyzed through the ArcGIS Online analysis tool “Trace Downstream”. The 

figure below shows the farthest point and the path of overland calculation for the whole 

Indian Creek Basin. 
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Figure 35. Downstream paths from farthest point in the watershed division (red path) and 

NHD high resolution streams (AIMS 2014), (USGS NHD Data 2016). 
 

With the maximum overland flow point and the length of travel to the first stream, the 

overland flow calculation is developed after the evaluation of the more appropriate 

equations/formulas. According to chapter 2, section 2.6, there are many equations that fit the 

physical and meteorological characteristics of the Indian Creek Basin. In order to get the best 

result, six equations were developed for the maximum overland flow to get the time of 

concentration. The assumptions of constant rainfall and constant slope along the plane were 

implemented for all the equations/formulas. Also, the formulas presented below were 

developed for concrete/asphalt surfaces due to the high concentration of urban developments 
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in the basin and because it is evident that the time of concentration for grass or other surfaces 

is much higher. 

The first equation is Equation (6) presented by Wong (2005). With So equals 

0.017574 (m m-1), Lo equals 3,056.46232 (m), and in equals 21.137738 (mmh-1), then: 

𝑡𝑜 = (10.57 +
0.12

0.017574
) (

3,056.46232

30.48
)

0.55−(0.001
0.017574⁄ )

   21.137738−0.43 

  to = 45 minutes 

The second equation is Equation (7) presented by Wong (2005). With Nk equals 0.02 

(imperviousness surface), Lo equals 3,056.46232 (m), and So equals 0.017574 (m m-1), then: 

𝑡𝑜 = 1.45(0.02𝑥3,056.46232 0.0175740.5⁄ )0.467 

to = 25 minutes 

The third equation is Equation (8) presented by Wong (2005). With constants 

(representing impervious surface – concrete) C equals 3 and k equals 0.5, v equals 0.874x10-6 

m2s-1 for water at 26 oC, So equals 0.017574 (m m-1), Lo equals 3,056.46232 (m), and in 

equals 21.137738 (mmh-1), then: 

𝑡𝑜 = (
0.21(3.6 𝑥 106𝑥 0.000000874)0.5  3 𝑥 3,056.462321.5

0.017574 𝑥 21.1377381.5
)

1
3⁄

 

to = 48 minutes 

       The fourth equation is Equation (9) presented by Almeida, et al. (2014). With 𝑖 equals 

21.137738 (mm/h), 𝐿 equals 3.05646232 (km), and 𝑆 equals 0.017574 (m/m), then:  

𝑇𝑐 = 2.2535 𝑥 21.137738−0.7164 𝑥 3.056462320.5552 𝑥 0.017574−0.2070 

     Tc = 65 minutes 
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      The fifth equation is Equation (10) presented by Almeida, et al. (2014). With 𝐿 equals 

3.05646232 (km), and 𝑆 equals 0.017574 (m/m), then:  

𝑇𝑐 = 0.0977 𝑥 3.056462320.6 𝑥 0.017574−0.3 

          Tc = 39 minutes 

The sixth equation is Equation (11) presented by Almeida, et al. (2014). With n 

equals 0.012 (see appendix C), L equals 3.05646232 (km),  𝑆 equals 0.017574 (m/m), and in 

equals 21.137738 (mm/h), then:  

𝑇𝑐 = 7.3015 (
0.012 𝑥 3.05646232

0.0175740.5
)

0.6

   21.137738−0.4 

        Tc = 60 minutes 

The summary of the equations is presented below to illustrate the final decisions in 

choosing the time of concentration from the overland flow that better fitted the study. 

Table 13. Summary of time of concentration equations/formulas. 

Equation/For

mula 

USACE Kerby Chen and 

Wong 

McCuen Carter Woolhiser & 

Liggett 

Time 

Overland 

(min) 

45 25 48 65 39 60 

R² (Wong, 

2005) 

0.94 -0.8 0.92 No defined No defined No defined 

Constraints/

Features 

Better with i < 

254 

i value no 

taken into 

account 

Kinematic k 

adjusted with 

flow regime 

Urban, area 

0.154 - 6.178 

sqmi*, S 
0.0007 - 0.03 

Urban, area < 

8 sqmi*, S < 

0.005, i value 
no taken into 

account 

Kinematic 

      Square miles* 

Table 13 shows the influence of i on all the equations, the Kerby equation and the 

Carter equation were formulated without taking into account the rain intensity parameter, 

thus the overland time is shortest. The accuracy of the Kerby equation is very low. According 

to Wong (2005), the low accuracy may be affected by the lack of I, even though the accuracy 

of Carter equation is not defined. Additionally, Carter’s constraints of area less than 8 square 

miles do not match the dimensions of the research area (73.64 square miles). McCuen’s 
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Formula was generated through a study in the United States urban basins with smooth 

steepness, however, as in Carter’s formula, constraints of area less than 6.178 square miles 

and the lack of accuracy  suggests a low rank when choosing the right formula. USACE’s 

equation has no area restrictions, thus it shows the highest accuracy with the time of overland 

flow close to the average time for the equations, which is 47 minutes. Additionally, 

USACE’s equation considers the rainfall intensity parameter that helps reach one of the best 

fits for the Indian Creek basin. The Chen and Wong’s formula and the Woolhiser & Liggett’s 

formula both use the kinematic theory. The Chen and Wong’s formula has a very high 

precision value whereas the Woolhiser & Liggett’s formula does not have enough accuracy.  

The Chen and Wong’s formula has a time of concentration overland very close to the average 

time of concentration. Furthermore, the Chen and Wong’s formula has the advantage of the 

adjustment of the k variable. The Chen and Wong’s formula has better accuracies for both 

concrete and grass (Wong, 2005). After all, the Chen and Wong’s formula was the one that 

fitted the best in the basin. 

The average and maximum time for snowmelt to reach any stream in the basin is the 

sum of the snow events in days (2.4 days) plus the to (48 minutes) that equals 2 days, 10 

hours, and 24 minutes. This means that any liquid contaminant coming from snow melting 

processes within the basin may take, as a maximum, around 2-3 days.  

       It is indispensable at this point to see the interaction between conductance and 

turbidity, a closer look to the calibration period data indicates a great cross correlation on lag 

numbers zero and one, however, the validation period data does not indicate a great 

correlation and the predominant maximum lag is at -10. One of the reasons for the previous 
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statement may be that the periods of calibration and validation have different precipitation 

regimes. The statistical analysis of these two parameters is shown in the figures below. 

 

 

Figure 36. Cross-correlation conductance and turbidity for calibration at USGS stations 

385446094430700 and 385520094420000 respectively (2011-2012). 
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Figure 37. Cross-correlation conductance and turbidity for calibration at USGS stations 

06893300, 385608094380300, 06893390, respectively (2011-2012). 
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Figure 38. Cross-correlation conductance and turbidity for calibration at USGS station 

06893350 (2011-2012). 

 

 

Figure 39. Cross-correlation conductance and turbidity for validation at USGS stations 

385446094430700 and 385520094420000 respectively (2012-2013). 
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Figure 40. Cross-correlation conductance and turbidity for validation at USGS stations 

06893300, 385608094380300, and 06893390 respectively (2012-2013). 
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Figure 41. Cross-correlation conductance and turbidity for validation at USGS station 

06893350 (2012-2013). 

The following method of comparison among the four parameters may be misleading 

due to the arbitrary scale use to get the parameters to coincide. However, Figures 42 through 

45 show series of representations among the snowfall, snowmelt, turbidity, and conductance, 

in which the evidence of the conductance disturbance due to the increase of salty solid matter 

into the streams is reflected in the turbidity as shown in the figures below. 
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Figure 42 Snowfall, snowmelt, specific conductance, and turbidity for calibration at USGS 

stations 385446094430700, 385520094420000, and 06893300 respectively (2011 – 2012). 
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Figure 43. Snowfall, snowmelt, specific conductance, and turbidity for calibration at USGS 

stations 385608094380300, 06893390, and 06893350 respectively (2011 – 2012). 
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Figure 44. Snowfall, snowmelt, specific conductance, and turbidity for validation at USGS 

stations 385446094430700, 385520094420000, and 06893300 respectively (2012 – 2013). 
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Figure 45. Snowfall, snowmelt, specific conductance, and turbidity for validation at USGS 

stations 385608094380300, 06893390, and 06893350 respectively (2012 – 2013). 
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       The time series curves are a combination of different parameters and units that 

have been altered to accommodate the scale of snowfall and snowmelt in inches and to ease 

the visual interpretation of the data. For the calibration of the time series curves, specific 

conductance and turbidity where modified by the factor x 0.001 and x 0.01 respectively. For 

the validation of the time series curve, specific conductance and turbidity where modified by 

the factor x0.001 and x 0.05 respectively. 

Although many thesis and papers have been written about the results with SWAT 

models, this research differs from those articles by making the runoff and snowmelt 

calculation an intermedia step to reach time lapse of this climatological process in a final 

step. The approach using snow fall information in mild winter locations as a media to 

scientifically calculate transport rates of contaminants may be found just in few other papers. 
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CHAPTER 5 

CONCLUSION 

It is fair to say that the initial hypothesis was valid since there is an agreement 

between the cross correlation analysis and the hydrological modeling results. The results in 

the hydrological model show a high dependency in relation with their spatiotemporal 

location.  

The alteration between the results of calibration vs validation is highly due to the 

different precipitation and temperature values of both periods. One of the key components 

was the DEM and the resolution that affects the final model. It is essential to understand that 

the acquisition of the DEM may meet two criteria, the resolution must have a balance 

between accuracy and size, too much resolution implies more processing time and physical 

size in the machine. Nevertheless the 30 m resolution DEM was good in size the details were 

not enough to reach a good result in the development of the watershed and sub-basins. The 

~1 m resolution DEM complied with both parameters and it has detailed information without 

being too bulky; approximately 1.82 GB. 

ArcSWAT has proven the strength and versatility in hydrological forecasting and 

accuracy. Despite the lack of abundant information, SWAT calculated the runoff with a 

satisfactory accuracy serving as a base for the further analysis between snowfall and 

snowmelt processes. Some of the limitations were the lack of information for discharge 

values in the USGS stations, the time lapse was limited to the station with shortest dates. 

Even though the influence of the snow melt process in the conductance was evident, it was 

not strongly conclusive due to the high influence of the increase in salty solid matter 
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reflected in the turbidity, which diminishes the conductance values almost instantly; turbidity 

is a reflection of the possible increase of solid matter coming from sewer pipes that dilutes 

the salty water. 

The limitation of the creation of a hydrological model with time lapse in hours, 

generates less precision of the final results. One of the most important conclusions was that 

the relationship between conductance and snowmelt is highly influence by physiographic and 

climatic factors, being turbidity a reflection of one of the most inferential parameters. 

Due to the characteristics of the methodology and the support based on snow events, 

it is evident that this technique will not be the best choice for places in which snow events are 

very common because it will be extremely laborious to split the snowfall events to determine 

the source of snowmelt effects after the fall, when the snow events are typically happening in 

small periods of time among each other; the principal of the time lapse in places with heavy 

periods of snowfall is totally lost whatsoever. 

The methodology of the research may open more spaces for watershed managers and 

stakeholders that have oversight the effects of snow melting salts in streams and the time 

lapses between snow fall and snow melt events and may help to examine or re-evaluate 

buffer zones in urban spaces.  
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CHAPTER 6 

FUTURE RESEARCH 

One of the disadvantages on selecting the Indian Creek as a case study was the lack of 

extensive time lapse data available to do the analysis during the hydrological modeling 

results and comparison; the time lapse must be sufficient to cover the calibration and 

validation of the model. Future research may include a case study with enough information to 

corroborate the influence of turbidity in the final results. Also, the case study will be chosen 

taking into account no just the time lapse but the spatial distance of weather station to the 

basin boundaries. Another point is the collection and analysis of waste water discharges to 

evaluate the effects of the components of such discharge mostly in the specific conductance 

and the turbidity. Although the configuration of the storm water system in the urban core was 

not necessary for this research, it will be taken into account for future developments. The 

storm water system may dissipate the effects of the salts entering the stream network. It is 

also important to bring into consideration the homogeneity of the climatology information 

incorporated within the model; initial parameters were collected from different stations 

instead of collecting all the datasets within the same climate stations and it may influenced 

the accuracy of the results as well.  

The last improvement to incorporate in the research may be the development of the 

hydrological model following the same methodology and using hourly information instead of 

daily information to reach better accuracy on the prediction of snowmelt and the time lapse 

to reach the streams. Study of temporal resolution is necessary to measure the impacts in the 

SWAT model, especially for precipitation datasets (Yang, Liu, et al. 2016). Many researchers 
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have investigated this temporal resolution finding better performance on SWAT models for 

the sub-daily and sub-hourly analysis in comparison with traditional daily models (Yang, 

Liu, et al. 2016), (Maharjan, et al. 2013), and (Jeong, et al. 2010). Finally, the comparison 

among different software applications or add-ins for the development of hydrological models 

is a great option to find the most accurate software for this type of research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

89 
 

 

 

 

 

 

 

 

 

 

 

 

APPENDICES 

APPENDIX A 

NOAA Climate Information 
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APPENDIX B 

Initial Analysis of Suitable Climate Stations 
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NAME STATE LATITUDE LONGITUDE 
BEGIN 

DATE 

END 

DATE 
STATION TYPE PARAMETERS 

ATCHISON KS 39.58 -95.11 2000-1-1 Current HPRCC MXT,MT,P,S,SD 

ATCHISON 1S KS 39.55 -95.12 2009-6-20 Current HPRCC MXT,MT,P,S,SD 

BONNER SPRINGS KS 39.06 -94.9 1964-4-1 Current HPRCC MXT,MT,P,S,SD 

CENTERVILLE 4SW KS 38.19 -95.07 1994-3-1 Current HPRCC P,S,SD 

CLINTON LAKE KS 38.94 -95.34 2001-7-17 Current HPRCC MXT,MT,P,S,SD 

DE SOTO KS 38.97 -94.98 2006-3-4 Current HPRCC P,S,SD 

EASTON KS 39.34 -95.12 2008-8-3 Current HPRCC P,S,SD 

GARNETT 1 E KS 38.28 -95.22 2009-11-1 Current HPRCC MXT,MT,P,S,SD 

HILLSDALE LAKE KS 38.66 -94.89 1986-4-1 Current HPRCC MXT,MT,P,S,SD 

LANE KS 38.44 -95.08 2009-2-10 Current HPRCC P,S,SD 

LAWRENCE KS 38.96 -95.25 2007-5-9 Current HPRCC MXT,MT,P,S,SD 

LAWRENCE MUNI AP KS 39.01 -95.21 2000-1-1 Current HPRCC MXT,MT,P,S,SD 

LEAVENWORTH 3SW KS 39.28 -94.95 2011-11-9 Current HPRCC MXT,MT,P,S,SD 

LECOMPTON KS 39.05 -95.39 1986-11-1 Current HPRCC P,S,SD 

MANHATTAN KS 39.2 -96.58 1984-6-28 Current HPRCC MXT,MT,P,W,ST,SR,RH,ET 

MOUND CITY 1SSW KS 38.13 -94.82 2008-4-1 Current HPRCC MXT,MT,P,S,SD 

OLATHE 3.3 ENE KS 38.9049 -94.7569   Current HPRCC MXT,MT,P,S,SD 

OLATHE JOHNSON CO AP KS 38.83167 -94.88972 2000-10-6 Current HPRCC MXT,MT,P,S,SD 

OLATHE JOHNSON CO EXEC 

AP 
KS 38.85 -94.73917 2000-7-31 Current HPRCC MXT,MT,P,S,SD 

OSAWATOMIE KS 38.5 -94.96 1998-11-1 Current HPRCC MXT,MT,P,S,SD 

OTTAWA KS 38.62 -95.28 1985-3-28 Current HPRCC MXT,MT,P,W,ST,SR,RH,ET 

OVERBROOK 7SE KS 38.73 -95.44 1996-9-1 Current HPRCC P,S,SD 

OVERLAND PARK S 87TH KS 38.9533 -94.7142 2000-1-4 Current HPRCC P,S,SD 

PARSONS KS 37.37 -95.28 1985-3-28 Current HPRCC MXT,MT,P,W,ST,SR,RH,ET 

PERRY LAKE KS 39.12 -95.41 2000-1-1 Current HPRCC MXT,MT,P,S,SD 

POMONA LAKE KS 38.65 -95.57 2002-12-27 Current HPRCC MXT,MT,P,S,SD 

ROSSVILLE KS 39.12 -95.92 1989-1-5 Current HPRCC MXT,MT,P,W,ST,SR,RH,ET 

SILVERLAKE KS 39.07 -95.77 1985-3-28 Current HPRCC MXT,MT,P,W,ST,SR,RH,ET 

STANLEY 3S KS 38.77 -94.67 2010-3-9 Current HPRCC P,S,SD 

TONGANOXIE KS 39.03 -95.05 2006-5-1 Current HPRCC P,S,SD 

TOPEKA MUNI AP KS 39.07 -95.63 1946-8-1 Current HPRCC MXT,MT,P,S,SD 

VALLEY FALLS KS 39.3 -95.49 2001-2-7 Current HPRCC MXT,MT,P,S,SD 

APPLETON CITY MO 38.19 -94.03 2000-1-1 Current HPRCC MXT,MT,P,S,SD 

BUTLER 4W MO 38.26 -94.41 1978-7-1 Current HPRCC MXT,MT,P,S,SD 

CLINTON MO 38.4 -93.77 1990-7-1 Current HPRCC MXT,MT,P,S,SD 

DREXEL MO 38.48 -94.61 2008-8-12 2013-12-19 HPRCC P,S,SD 

ELM MO 38.87 -94.04 1997-9-1 Current HPRCC MXT,MT,P,S,SD 

HARRISONVILLE MO 38.65 -94.36 2005-5-1 Current HPRCC P,S,SD 

HIGGINSVILLE MO 39.07 -93.71 1991-11-1 Current HPRCC MXT,MT,P,S,SD 

INDEPENDENCE MO 39.06 -94.39 1992-6-1 Current HPRCC MXT,MT,P,S,SD 

KANSAS CITY DOWNTOWN 

AP 
MO 39.12 -94.6 2000-8-15 Current HPRCC MXT,MT,P,S,SD 

KANSAS CITY INTL AP MO 39.3 -94.73 1972-10-1 Current HPRCC MXT,MT,P,S,SD 

KANSAS CITY NWSTC MO 39.28 -94.66 2010-2-3 Current HPRCC MXT,MT,P,S,SD 
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NAME STATE LATITUDE LONGITUDE 
BEGIN 

DATE 

END 

DATE 
STATION TYPE PARAMETERS 

KANSAS CITY PLEASANT 

HILL 
MO 38.81 -94.26 1995-7-1 Current HPRCC MXT,MT,P,S,SD 

KANSAS CITY SOUTH MO 38.93 -94.54 2009-4-1 Current HPRCC P,S,SD 

KANSAS CITY STADIUM DR MO 39.06 -94.51 2009-12-23 Current HPRCC P 

KANSAS CITY WATTS MILL MO 38.9464 -94.6047 2006-4-23 Current HPRCC P,S,SD 

KEARNEY 3E MO 39.37 -94.33 2009-7-1 Current HPRCC MXT,MT,P,S,SD 

KINGSVILLE MO 38.74 -94.07 2010-1-7 Current HPRCC P,S,SD 

LEES SUMMIT MUNI AP MO 38.96 -94.37 2001-10-26 Current HPRCC MXT,MT,P,S,SD 

LEXINGTON 2SSW MO 39.16 -93.89 2009-7-10 Current HPRCC MXT,MT,P,S,SD 

POLO MO 39.54 -94.04 2006-9-1 Current HPRCC MXT,MT,P,S,SD 

RAYMORE MO 38.8 -94.44 2000-1-1 Current HPRCC MXT,MT,P,S,SD 

RAYTOWN #2 MO 38.97 -94.48 2005-2-6 Current HPRCC P,S,SD 

RICHMOND 3 S MO 39.24 -93.97 2000-5-9 Current HPRCC MXT,MT,P,S,SD 

ROCKPORT MO 40.47 -95.48 1991-1-1 Current HPRCC MXT,MT,P,W,ST,SR,RH,ET 

SMITHVILLE LAKE MO 39.39 -94.56 2000-1-1 Current HPRCC MXT,MT,P,S,SD 

ST JOSEPH ROSECRANS AP MO 39.77 -94.92 2000-7-31 Current HPRCC MXT,MT,P,S,SD 

STJOE MO 39.77 -94.92 1992-1-1 Current HPRCC MXT,MT,P,W,ST,SR,RH,ET 

UNITY VILLAGE MO 38.95 -94.4 2005-7-2 Current HPRCC P,S,SD 

UNITY VILLAGE 2.6ESE MO 38.94 -94.36 2008-1-31 Current HPRCC MXT,MT,P,S,SD 

URICH 2 SW MO 38.43 -94.03 2006-8-14 Current HPRCC P,S,SD 

WARRENSBURG 4 NW MO 38.78 -93.8 1998-2-1 Current HPRCC MXT,MT,P,S,SD 

BRUNSWICK MO 39.412667 -93.1965 2008-12-1 Current UMOEXT W,SR,ET 

GREEN RIDGE MO 38.621147 -93.416652 2008-12-1 Current UMOEXT W,SR,ET 
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APPENDIX C 

Manning’s Roughness Coefficients Table 
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Surface Material 

Manning's Roughness 

Coefficient 

- n - 

Asbestos cement 0.011 

Asphalt 0.016 

Brass 0.011 

Brick 0.015 

Canvas 0.012 

Cast-iron, new 0.012 

Clay tile 0.014 

Concrete - steel forms 0.011 

Concrete (Cement) - finished 0.012 

Concrete - wooden forms 0.015 

Concrete - centrifugally spun 0.013 

Copper 0.011 

Corrugated metal 0.022 

Earth, smooth 0.018 

Earth channel - clean 0.022 

Earth channel - gravelly 0.025 
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Surface Material 

Manning's Roughness 

Coefficient 

- n - 

Earth channel - weedy 0.030 

Earth channel - stony, cobbles 0.035 

Floodplains - pasture, farmland 0.035 

Floodplains - light brush 0.050 

Floodplains - heavy brush 0.075 

Floodplains - trees 0.15 

Galvanized iron 0.016 

Glass 0.010 

Gravel, firm 0.023 

Lead 0.011 

Masonry 0.025 

Metal - corrugated 0.022 

Natural streams - clean and straight 0.030 

Natural streams - major rivers 0.035 

Natural streams - sluggish with deep pools 0.040 

Natural channels, very poor condition 0.060 
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Surface Material 

Manning's Roughness 

Coefficient 

- n - 

Plastic 0.009 

Polyethylene PE - Corrugated with smooth inner walls 0.009 - 0.015 

Polyethylene PE - Corrugated with corrugated inner walls 0.018 - 0.025 

Polyvinyl Chloride PVC - with smooth inner walls 0.009 - 0.011 

Rubble Masonry 0.017 

Steel - Coal-tar enamel 0.010 

Steel - smooth 0.012 

Steel - New unlined 0.011 

Steel - Riveted 0.019 

Vitrified Sewer 0.013 - 0.015 

Wood - planed 0.012 

Wood - unplaned 0.013 

Wood stove pipe, small diameter 0.011 - 0.012 

Wood stove pipe, large diameter 0.012 - 0.013 
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APPENDIX D 

Python Script for Organization and Accuracy Calculation of the Model 
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Python Script for Organization and Accuracy Calculation of the Model 

# import modules 

import arcpy 

import timeit 

start = timeit.default_timer() 

print start 

# definition of variables 

arcpy.env.workspace = r"C:\Student\UMKC\Thesis\GIS\gdb\RunoffCalculations.gdb" 

Area3 = 5915254.356 

Area4 = 4591190.379 

Area5 = 83738.4863 

Area6 = 686021.0045 

Area7 = 5340452.947 

Area8 = 3453069.307 

Area9 = 6408876.615 

Area10 = 643089.556 

Area11 = 5666385.896 

Area13 = 4865617.654 

Area14 = 2604099.774 

Area15 = 4178129.232 

Area16 = 1926791.307 

Area17 = 5584649.084 

Area18 = 6697865.119 

Area19 = 4111991.310048 
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Area20 = 3984365.116757 

Area21 = 8727168.558616 

Area22 = 5681126.827 

Area23 = 4833588.421 

Area24 = 1188413.48 

Area25 = 5928141.65188 

Area26 = 4985431.865367 

Area27 = 16593174.38 

Area28 = 9254653.359 

Area29 = 8171853.186972 

Area30 = 356311.231116 

Area31 = 86246.10708 

Area32 = 590864.6018 

Area33 = 1182841.529 

Area34 = 22731456.04 

Area35 = 8637783.499839 

 

FC1 = "Runoff_Data_26C" 

#Where "YYYYMMDD" is [0],"SUB" is [1],"SURQmm" is [2] 

FC1_Fields = ["YYYYMMDD","SUB","SURQmm"] 

 

FC2 = "Runoff_Comp_Mod_26C" 

#Where "YYYYMMDD" is [0],"SIM_30700" is [1],"SIM_20000" is [2],"SIM_93300" is 

[3],"SIM_80300" is [4],"SIM_93390" is [5],"SIM_93350" is [6],"OBS_30700"is 

[7],"OBS_20000" is [8],"OBS_93300" is [9],"OBS_80300" is [10],"OBS_93390" is 

[11],"OBS_93350" is [12] 
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# "OBSSUM30700" is [13],"OBSAVE30700" is [14],"SIMSUM30700" is 

[15],"SIMAVE30700" is [16],"NSE30700_P1" is [17],"NSE30700_P2" is 

[18],"NSESUM30700_P1" is [19],"NSESUM30700_P2" is [20],"NSE_30700" is 

[21],"PBIAS30700_P1" is [22],"PBIAS_30700" is [23] 

# "R2_37000_P1" is [24],"R2_37000_P2" is [25],"R2SUM37000_P1" is 

[26],"R2SUM37000_P2" is [27],"R2_37000_P3" is [28],"R2_37000" is [29] 

# "OBSSUM20000" is [30],"OBSAVE20000" is [31],"SIMSUM20000" is 

[32],"SIMAVE20000" is [33],"NSE20000_P1" is [34],"NSE20000_P2" is 

[35],"NSESUM20000_P1" is [36],"NSESUM20000_P2" is [37],"NSE_20000" is 

[38],"PBIAS20000_P1" is [39],"PBIAS_20000" is [40] 

# "R2_20000_P1" is [41],"R2_20000_P2" is [42],"R2SUM20000_P1" is 

[43],"R2SUM20000_P2" is [44],"R2_20000_P3" is [45],"R2_20000" is [46] 

# "OBSSUM93300" is [47],"OBSAVE93300" is [48],"SIMSUM93300" is 

[49],"SIMAVE93300" is [50],"NSE93300_P1" is [51],"NSE93300_P2" is 

[52],"NSESUM93300_P1" is [53],"NSESUM93300_P2" is [54],"NSE_93300" is 

[55],"PBIAS93300_P1" is [56],"PBIAS_93300" is [57] 

# "R2_93300_P1" is [58],"R2_93300_P2" is [59],"R2SUM93300_P1" is 

[60],"R2SUM93300_P2" is [61],"R2_93300_P3" is [62],"R2_93300" is [63] 

# "OBSSUM80300" is [64],"OBSAVE80300" is [65],"SIMSUM80300" is 

[66],"SIMAVE80300" is [67],"NSE80300_P1" is [68],"NSE80300_P2" is 

[69],"NSESUM80300_P1" is [70],"NSESUM80300_P2" is [71],"NSE_80300" is 

[72],"PBIAS80300_P1" is [73],"PBIAS_80300" is [74] 

# "R2_80300_P1" is [75],"R2_80300_P2" is [76],"R2SUM80300_P1" is 

[77],"R2SUM80300_P2" is [78],"R2_80300_P3" is [79],"R2_80300" is [80] 

# "OBSSUM93390" is [81],"OBSAVE93390" is [82],"SIMSUM93390" is 

[83],"SIMAVE93390" is [84],"NSE93390_P1" is [85],"NSE93390_P2" is 

[86],"NSESUM93390_P1" is [87],"NSESUM93390_P2" is [88],"NSE_93390" is 

[89],"PBIAS93390_P1" is [90],"PBIAS_93390" is [91] 

# "R2_93390_P1" is [92],"R2_93390_P2" is [93],"R2SUM93390_P1" is 

[94],"R2SUM93390_P2" is [95],"R2_93390_P3" is [96],"R2_93390" is [97] 

# "OBSSUM93350" is [98],"OBSAVE93350" is [99],"SIMSUM93350" is 

[100],"SIMAVE93350" is [101],"NSE93350_P1" is [102],"NSE93350_P2" is 

[103],"NSESUM93350_P1" is [104],"NSESUM93350_P2" is [105],"NSE_93350" is 

[106],"PBIAS93350_P1" is [107],"PBIAS_93350" is [108] 
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# "R2_93350_P1" is [109],"R2_93350_P2" is [110],"R2SUM93350_P1" is 

[111],"R2SUM93350_P2" is [112],"R2_93350_P3" is [113],"R2_93350" is 

[114],"NSE_AVE" is [115],"PBIAS_AVE" is [116],"R2_AVE" is [117] 

FC2_Fields = 

["YYYYMMDD","SIM_30700","SIM_20000","SIM_93300","SIM_80300","SIM_93390","

SIM_93350","OBS_30700","OBS_20000","OBS_93300","OBS_80300","OBS_93390","OB

S_93350","OBSSUM30700","OBSAVE30700","SIMSUM30700","SIMAVE30700","NSE3

0700_P1","NSE30700_P2","NSESUM30700_P1","NSESUM30700_P2","NSE_30700","PB

IAS30700_P1","PBIAS_30700","R2_30700_P1","R2_30700_P2","R2SUM30700_P1","R2S

UM30700_P2","R2_30700_P3","R2_30700", 

"OBSSUM20000","OBSAVE20000","SIMSUM20000","SIMAVE20000","NSE20000_P1",

"NSE20000_P2","NSESUM20000_P1","NSESUM20000_P2","NSE_20000","PBIAS20000

_P1","PBIAS_20000","R2_20000_P1","R2_20000_P2","R2SUM20000_P1","R2SUM20000

_P2","R2_20000_P3","R2_20000", 

"OBSSUM93300","OBSAVE93300","SIMSUM93300","SIMAVE93300","NSE93300_P1",

"NSE93300_P2","NSESUM93300_P1","NSESUM93300_P2","NSE_93300","PBIAS93300

_P1","PBIAS_93300","R2_93300_P1","R2_93300_P2","R2SUM93300_P1","R2SUM93300

_P2","R2_93300_P3","R2_93300", 

"OBSSUM80300","OBSAVE80300","SIMSUM80300","SIMAVE80300","NSE80300_P1",

"NSE80300_P2","NSESUM80300_P1","NSESUM80300_P2","NSE_80300","PBIAS80300

_P1","PBIAS_80300","R2_80300_P1","R2_80300_P2","R2SUM80300_P1","R2SUM80300

_P2","R2_80300_P3","R2_80300", 

"OBSSUM93390","OBSAVE93390","SIMSUM93390","SIMAVE93390","NSE93390_P1",

"NSE93390_P2","NSESUM93390_P1","NSESUM93390_P2","NSE_93390","PBIAS93390

_P1","PBIAS_93390","R2_93390_P1","R2_93390_P2","R2SUM93390_P1","R2SUM93390

_P2","R2_93390_P3","R2_93390", 

"OBSSUM93350","OBSAVE93350","SIMSUM93350","SIMAVE93350","NSE93350_P1",

"NSE93350_P2","NSESUM93350_P1","NSESUM93350_P2","NSE_93350","PBIAS93350

_P1","PBIAS_93350","R2_93350_P1","R2_93350_P2","R2SUM93350_P1","R2SUM93350

_P2","R2_93350_P3","R2_93350","NSE_AVE","PBIAS_AVE","R2_AVE"] 

# start of the fragmentation process and the accuracy calculation 

print 'Starting process for Station 30700' 

Iter = 0.00 

Simsum = 0.00 
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Simave = 0.00 

cur2 = arcpy.da.UpdateCursor(FC2, FC2_Fields) 

for row2 in cur2: 

    cur = arcpy.da.SearchCursor(FC1, FC1_Fields, sql_clause=(None, 'ORDER BY 

YYYYMMDD')) 

    for row in cur: 

  if row[0] == row2[0]: 

                    if row[1] == 19: 

                        Iter = Iter + 1 

                        row2[1] = ((row[2]*Area19)/1000) 

                    else: 

                        pass 

                    if row[1] == 20: 

                        Iter = Iter + 1 

                        row2[1] += ((row[2]*Area20)/1000) 

                    else: 

                        pass 

                    if row[1] == 21: 

                        Iter = Iter + 1 

                        row2[1] += ((row[2]*Area21)/1000) 

                    else: 

                        pass 

                    if row[1] == 25: 

                        Iter = Iter + 1 

                        row2[1] += ((row[2]*Area25)/1000) 
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                    else: 

                        pass 

                    if row[1] == 26: 

                        Iter = Iter + 1 

                        row2[1] += ((row[2]*Area26)/1000) 

                    else: 

                        pass 

                    if row[1] == 29: 

                        Iter = Iter + 1 

                        row2[1] += ((row[2]*Area29)/1000) 

                    else: 

                        pass 

                    if row[1] == 30: 

                        Iter = Iter + 1 

                        row2[1] += ((row[2]*Area30)/1000) 

                    else: 

                        pass 

    cur2.updateRow(row2) 

    Simsum = Simsum + row2[1] 

    Simave = Simsum/(Iter/7) 

    arcpy.CalculateField_management(FC2, "SIMSUM30700", Simsum, "PYTHON_9.3", "") 

    arcpy.CalculateField_management(FC2, "SIMAVE30700", Simave, "PYTHON_9.3", "") 

    arcpy.CalculateField_management(FC2, "NSE30700_P1", "math.pow( !OBS_30700! - 

!SIM_30700!,2 )", "PYTHON_9.3", "") 

    arcpy.CalculateField_management(FC2, "PBIAS30700_P1", "(( !OBS_30700! - 

!SIM_30700! ) * 100)/ !OBSSUM30700!", "PYTHON_9.3", "") 
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    arcpy.CalculateField_management(FC2, "R2_30700_P1", "(!OBS_30700! - 

!OBSAVE30700! ) * (!SIM_30700! - !SIMAVE30700!)", "PYTHON_9.3", "") 

    arcpy.CalculateField_management(FC2, "R2_30700_P2", "math.pow( !SIM_30700! - 

!SIMAVE30700!,2 )", "PYTHON_9.3", "") 

 

del cur, row, cur2, row2 

 

NSESumP1 = 0.00 

PBIAS = 0.00 

R2SumP1 = 0.00 

R2SumP2 = 0.00 

cur2 = arcpy.da.SearchCursor(FC2, FC2_Fields) 

for row2 in cur2: 

    NSESumP1 = NSESumP1 + row2[17] 

    PBIAS = PBIAS + row2[22] 

    R2SumP1 = R2SumP1 + row2[24] 

    R2SumP2 = R2SumP2 + row2[25] 

arcpy.CalculateField_management(FC2, "NSESUM30700_P1", NSESumP1, 

"PYTHON_9.3", "") 

arcpy.CalculateField_management(FC2, "NSE_30700","(!NSESUM30700_P2! - 

!NSESUM30700_P1!)/!NSESUM30700_P2!", "PYTHON_9.3", "") 

arcpy.CalculateField_management(FC2, "PBIAS_30700", PBIAS, "PYTHON_9.3", "") 

arcpy.CalculateField_management(FC2, "R2SUM30700_P1", R2SumP1, "PYTHON_9.3", 

"") 

arcpy.CalculateField_management(FC2, "R2SUM30700_P2", R2SumP2, "PYTHON_9.3", 

"") 

arcpy.CalculateField_management(FC2, "R2_30700_P3", "math.sqrt( !NSESUM30700_P2! 

* !R2SUM30700_P2! )", "PYTHON_9.3", "") 
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arcpy.CalculateField_management(FC2, "R2_30700", "math.pow( !R2SUM30700_P1! / 

!R2_30700_P3!,2 )", "PYTHON_9.3", "") 

del cur2, row2 

print 'Finished process for Station 30700' 

 

print 'Starting process for Station 20000' 

Iter = 0.00 

Simsum = 0.00 

Simave = 0.00 

cur2 = arcpy.da.UpdateCursor(FC2, FC2_Fields) 

for row2 in cur2: 

    cur = arcpy.da.SearchCursor(FC1, FC1_Fields, sql_clause=(None, 'ORDER BY 

YYYYMMDD')) 

    for row in cur: 

  if row[0] == row2[0]: 

                    if row[1] == 18: 

                        Iter = Iter + 1 

                        row2[2] = ((row[2]*Area18)/1000) 

                    else: 

                        pass 

                    if row[1] == 19: 

                        Iter = Iter + 1 

                        row2[2] += ((row[2]*Area19)/1000) 

                    else: 

                        pass 

                    if row[1] == 20: 
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                        Iter = Iter + 1 

                        row2[2] += ((row[2]*Area20)/1000) 

                    else: 

                        pass 

                    if row[1] == 21: 

                        Iter = Iter + 1 

                        row2[2] += ((row[2]*Area21)/1000) 

                    else: 

                        pass 

                    if row[1] == 25: 

                        Iter = Iter + 1 

                        row2[2] += ((row[2]*Area25)/1000) 

                    else: 

                        pass 

                    if row[1] == 26: 

                        Iter = Iter + 1 

                        row2[2] += ((row[2]*Area26)/1000) 

                    else: 

                        pass 

                    if row[1] == 29: 

                        Iter = Iter + 1 

                        row2[2] += ((row[2]*Area29)/1000) 

                    else: 

                        pass 

                    if row[1] == 30: 
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                        Iter = Iter + 1 

                        row2[2] += ((row[2]*Area30)/1000) 

                    else: 

                        pass 

    cur2.updateRow(row2) 

    Simsum = Simsum + row2[2] 

    Simave = Simsum/(Iter/8) 

    arcpy.CalculateField_management(FC2, "SIMSUM20000", Simsum, "PYTHON_9.3", "") 

    arcpy.CalculateField_management(FC2, "SIMAVE20000", Simave, "PYTHON_9.3", "") 

    arcpy.CalculateField_management(FC2, "NSE20000_P1", "math.pow( !OBS_20000! - 

!SIM_20000!,2 )", "PYTHON_9.3", "") 

    arcpy.CalculateField_management(FC2, "PBIAS20000_P1", "(( !OBS_20000! - 

!SIM_20000! ) * 100)/ !OBSSUM20000!", "PYTHON_9.3", "") 

    arcpy.CalculateField_management(FC2, "R2_20000_P1", "(!OBS_20000! - 

!OBSAVE20000! ) * (!SIM_20000! - !SIMAVE20000!)", "PYTHON_9.3", "") 

    arcpy.CalculateField_management(FC2, "R2_20000_P2", "math.pow( !SIM_20000! - 

!SIMAVE20000!,2 )", "PYTHON_9.3", "") 

 

del cur, row, cur2, row2 

 

NSESumP1 = 0.0 

PBIAS = 0.0 

R2SumP1 = 0.0 

R2SumP2 = 0.0 

cur2 = arcpy.da.SearchCursor(FC2, FC2_Fields) 

for row2 in cur2: 

    NSESumP1 = NSESumP1 + row2[34] 
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    PBIAS = PBIAS + row2[39] 

    R2SumP1 = R2SumP1 + row2[41] 

    R2SumP2 = R2SumP2 + row2[42] 

arcpy.CalculateField_management(FC2, "NSESUM20000_P1", NSESumP1, 

"PYTHON_9.3", "") 

arcpy.CalculateField_management(FC2, "NSE_20000","(!NSESUM20000_P2! - 

!NSESUM20000_P1!)/!NSESUM20000_P2!", "PYTHON_9.3", "") 

arcpy.CalculateField_management(FC2, "PBIAS_20000", PBIAS, "PYTHON_9.3", "") 

arcpy.CalculateField_management(FC2, "R2SUM20000_P1", R2SumP1, "PYTHON_9.3", 

"") 

arcpy.CalculateField_management(FC2, "R2SUM20000_P2", R2SumP2, "PYTHON_9.3", 

"") 

arcpy.CalculateField_management(FC2, "R2_20000_P3", "math.sqrt( !NSESUM20000_P2! 

* !R2SUM20000_P2! )", "PYTHON_9.3", "") 

arcpy.CalculateField_management(FC2, "R2_20000", "math.pow( !R2SUM20000_P1! / 

!R2_20000_P3!,2 )", "PYTHON_9.3", "") 

del cur2, row2 

print 'Finished process for Station 20000' 

 

print 'Starting process for Station 93300' 

Iter = 0.00 

Simsum = 0.00 

Simave = 0.00 

cur2 = arcpy.da.UpdateCursor(FC2, FC2_Fields) 

for row2 in cur2: 

    cur = arcpy.da.SearchCursor(FC1, FC1_Fields, sql_clause=(None, 'ORDER BY 

YYYYMMDD')) 

    for row in cur: 
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  if row[0] == row2[0]: 

                    if row[1] == 9: 

                        Iter = Iter + 1 

                        row2[3] = ((row[2]*Area9)/1000) 

                    else: 

                        pass 

                    if row[1] == 11: 

                        Iter = Iter + 1 

                        row2[3] += ((row[2]*Area11)/1000) 

                    else: 

                        pass 

                    if row[1] == 15: 

                        Iter = Iter + 1 

                        row2[3] += ((row[2]*Area15)/1000) 

                    else: 

                        pass 

                    if row[1] == 16: 

                        Iter = Iter + 1 

                        row2[3] += ((row[2]*Area16)/1000) 

                    else: 

                        pass 

                    if row[1] == 17: 

                        Iter = Iter + 1 

                        row2[3] += ((row[2]*Area17)/1000) 

                    else: 



 

111 
 

                        pass 

                    if row[1] == 18: 

                        Iter = Iter + 1 

                        row2[3] += ((row[2]*Area18)/1000) 

                    else: 

                        pass 

                    if row[1] == 19: 

                        Iter = Iter + 1 

                        row2[3] += ((row[2]*Area19)/1000) 

                    else: 

                        pass 

                    if row[1] == 20: 

                        Iter = Iter + 1 

                        row2[3] += ((row[2]*Area20)/1000) 

                    else: 

                        pass 

                    if row[1] == 21: 

                        Iter = Iter + 1 

                        row2[3] += ((row[2]*Area21)/1000) 

                    else: 

                        pass 

                    if row[1] == 25: 

                        Iter = Iter + 1 

                        row2[3] += ((row[2]*Area25)/1000) 

                    else: 
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                        pass 

                    if row[1] == 26: 

                        Iter = Iter + 1 

                        row2[3] += ((row[2]*Area26)/1000) 

                    else: 

                        pass 

                    if row[1] == 29: 

                        Iter = Iter + 1 

                        row2[3] += ((row[2]*Area29)/1000) 

                    else: 

                        pass 

                    if row[1] == 30: 

                        Iter = Iter + 1 

                        row2[3] += ((row[2]*Area30)/1000) 

                    else: 

                        pass 

                    if row[1] == 31: 

                        Iter = Iter + 1 

                        row2[3] += ((row[2]*Area31)/1000) 

                    else: 

                        pass 

                    if row[1] == 32: 

                        Iter = Iter + 1 

                        row2[3] += ((row[2]*Area32)/1000) 

                    else: 
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                        pass 

    cur2.updateRow(row2) 

    Simsum = Simsum + row2[3] 

    Simave = Simsum/(Iter/15) 

    arcpy.CalculateField_management(FC2, "SIMSUM93300", Simsum, "PYTHON_9.3", "") 

    arcpy.CalculateField_management(FC2, "SIMAVE93300", Simave, "PYTHON_9.3", "") 

    arcpy.CalculateField_management(FC2, "NSE93300_P1", "math.pow( !OBS_93300! - 

!SIM_93300!,2 )", "PYTHON_9.3", "") 

    arcpy.CalculateField_management(FC2, "PBIAS93300_P1", "(( !OBS_93300! - 

!SIM_93300! ) * 100)/ !OBSSUM93300!", "PYTHON_9.3", "") 

    arcpy.CalculateField_management(FC2, "R2_93300_P1", "(!OBS_93300! - 

!OBSAVE93300! ) * (!SIM_93300! - !SIMAVE93300!)", "PYTHON_9.3", "") 

    arcpy.CalculateField_management(FC2, "R2_93300_P2", "math.pow( !SIM_93300! - 

!SIMAVE93300!,2 )", "PYTHON_9.3", "") 

 

del cur, row, cur2, row2 

 

NSESumP1 = 0.0 

PBIAS = 0.0 

R2SumP1 = 0.0 

R2SumP2 = 0.0 

cur2 = arcpy.da.SearchCursor(FC2, FC2_Fields) 

for row2 in cur2: 

    NSESumP1 = NSESumP1 + row2[51] 

    PBIAS = PBIAS + row2[56] 

    R2SumP1 = R2SumP1 + row2[58] 

    R2SumP2 = R2SumP2 + row2[59] 
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arcpy.CalculateField_management(FC2, "NSESUM93300_P1", NSESumP1, 

"PYTHON_9.3", "") 

arcpy.CalculateField_management(FC2, "NSE_93300","(!NSESUM93300_P2! - 

!NSESUM93300_P1!)/!NSESUM93300_P2!", "PYTHON_9.3", "") 

arcpy.CalculateField_management(FC2, "PBIAS_93300", PBIAS, "PYTHON_9.3", "") 

arcpy.CalculateField_management(FC2, "R2SUM93300_P1", R2SumP1, "PYTHON_9.3", 

"") 

arcpy.CalculateField_management(FC2, "R2SUM93300_P2", R2SumP2, "PYTHON_9.3", 

"") 

arcpy.CalculateField_management(FC2, "R2_93300_P3", "math.sqrt( !NSESUM93300_P2! 

* !R2SUM93300_P2! )", "PYTHON_9.3", "") 

arcpy.CalculateField_management(FC2, "R2_93300", "math.pow( !R2SUM93300_P1! / 

!R2_93300_P3!,2 )", "PYTHON_9.3", "") 

del cur2, row2 

print 'Finished process for Station 93300' 

 

print 'Starting process for Station 80300' 

Iter = 0.00 

Simsum = 0.00 

Simave = 0.00 

cur2 = arcpy.da.UpdateCursor(FC2, FC2_Fields) 

for row2 in cur2: 

    cur = arcpy.da.SearchCursor(FC1, FC1_Fields, sql_clause=(None, 'ORDER BY 

YYYYMMDD')) 

    for row in cur: 

  if row[0] == row2[0]: 

                    if row[1] == 3: 

                        Iter = Iter + 1 
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                        row2[4] = ((row[2]*Area3)/1000) 

                    else: 

                        pass 

                    if row[1] == 4: 

                        Iter = Iter + 1 

                        row2[4] += ((row[2]*Area4)/1000) 

                    else: 

                        pass 

                    if row[1] == 5: 

                        Iter = Iter + 1 

                        row2[4] += ((row[2]*Area5)/1000) 

                    else: 

                        pass 

                    if row[1] == 6: 

                        Iter = Iter + 1 

                        row2[4] += ((row[2]*Area6)/1000) 

                    else: 

                        pass 

                    if row[1] == 7: 

                        Iter = Iter + 1 

                        row2[4] += ((row[2]*Area7)/1000) 

                    else: 

                        pass 

                    if row[1] == 8: 

                        Iter = Iter + 1 
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                        row2[4] += ((row[2]*Area8)/1000) 

                    else: 

                        pass 

                    if row[1] == 9: 

                        Iter = Iter + 1 

                        row2[4] += ((row[2]*Area9)/1000) 

                    else: 

                        pass 

                    if row[1] == 10: 

                        Iter = Iter + 1 

                        row2[4] += ((row[2]*Area10)/1000) 

                    else: 

                        pass 

                    if row[1] == 11: 

                        Iter = Iter + 1 

                        row2[4] += ((row[2]*Area11)/1000) 

                    else: 

                        pass 

                    if row[1] == 13: 

                        Iter = Iter + 1 

                        row2[4] += ((row[2]*Area13)/1000) 

                    else: 

                        pass 

                    if row[1] == 15: 

                        Iter = Iter + 1 
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                        row2[4] += ((row[2]*Area15)/1000) 

                    else: 

                        pass 

                    if row[1] == 16: 

                        Iter = Iter + 1 

                        row2[4] += ((row[2]*Area16)/1000) 

                    else: 

                        pass 

                    if row[1] == 17: 

                        Iter = Iter + 1 

                        row2[4] += ((row[2]*Area17)/1000) 

                    else: 

                        pass 

                    if row[1] == 18: 

                        Iter = Iter + 1 

                        row2[4] += ((row[2]*Area18)/1000) 

                    else: 

                        pass 

                    if row[1] == 19: 

                        Iter = Iter + 1 

                        row2[4] += ((row[2]*Area19)/1000) 

                    else: 

                        pass 

                    if row[1] == 20: 

                        Iter = Iter + 1 
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                        row2[4] += ((row[2]*Area20)/1000) 

                    else: 

                        pass 

                    if row[1] == 21: 

                        Iter = Iter + 1 

                        row2[4] += ((row[2]*Area21)/1000) 

                    else: 

                        pass 

                    if row[1] == 25: 

                        Iter = Iter + 1 

                        row2[4] += ((row[2]*Area25)/1000) 

                    else: 

                        pass 

                    if row[1] == 26: 

                        Iter = Iter + 1 

                        row2[4] += ((row[2]*Area26)/1000) 

                    else: 

                        pass 

                    if row[1] == 29: 

                        Iter = Iter + 1 

                        row2[4] += ((row[2]*Area29)/1000) 

                    else: 

                        pass 

                    if row[1] == 30: 

                        Iter = Iter + 1 
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                        row2[4] += ((row[2]*Area30)/1000) 

                    else: 

                        pass 

                    if row[1] == 31: 

                        Iter = Iter + 1 

                        row2[4] += ((row[2]*Area31)/1000) 

                    else: 

                        pass 

                    if row[1] == 32: 

                        Iter = Iter + 1 

                        row2[4] += ((row[2]*Area32)/1000) 

                    else: 

                        pass 

                    if row[1] == 33: 

                        Iter = Iter + 1 

                        row2[4] += ((row[2]*Area33)/1000) 

                    else: 

                        pass 

    cur2.updateRow(row2) 

    Simsum = Simsum + row2[4] 

    Simave = Simsum/(Iter/24) 

    arcpy.CalculateField_management(FC2, "SIMSUM80300", Simsum, "PYTHON_9.3", "") 

    arcpy.CalculateField_management(FC2, "SIMAVE80300", Simave, "PYTHON_9.3", "") 

    arcpy.CalculateField_management(FC2, "NSE80300_P1", "math.pow( !OBS_80300! - 

!SIM_80300!,2 )", "PYTHON_9.3", "") 
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    arcpy.CalculateField_management(FC2, "PBIAS80300_P1", "(( !OBS_80300! - 

!SIM_80300! ) * 100)/ !OBSSUM80300!", "PYTHON_9.3", "") 

    arcpy.CalculateField_management(FC2, "R2_80300_P1", "(!OBS_80300! - 

!OBSAVE80300! ) * (!SIM_80300! - !SIMAVE80300!)", "PYTHON_9.3", "") 

    arcpy.CalculateField_management(FC2, "R2_80300_P2", "math.pow( !SIM_80300! - 

!SIMAVE80300!,2 )", "PYTHON_9.3", "") 

 

del cur, row, cur2, row2 

 

NSESumP1 = 0.0 

PBIAS = 0.0 

R2SumP1 = 0.0 

R2SumP2 = 0.0 

cur2 = arcpy.da.SearchCursor(FC2, FC2_Fields) 

for row2 in cur2: 

    NSESumP1 = NSESumP1 + row2[68] 

    PBIAS = PBIAS + row2[73] 

    R2SumP1 = R2SumP1 + row2[75] 

    R2SumP2 = R2SumP2 + row2[76] 

arcpy.CalculateField_management(FC2, "NSESUM80300_P1", NSESumP1, 

"PYTHON_9.3", "") 

arcpy.CalculateField_management(FC2, "NSE_80300","(!NSESUM80300_P2! - 

!NSESUM80300_P1!)/!NSESUM80300_P2!", "PYTHON_9.3", "") 

arcpy.CalculateField_management(FC2, "PBIAS_80300", PBIAS, "PYTHON_9.3", "") 

arcpy.CalculateField_management(FC2, "R2SUM80300_P1", R2SumP1, "PYTHON_9.3", 

"") 

arcpy.CalculateField_management(FC2, "R2SUM80300_P2", R2SumP2, "PYTHON_9.3", 

"") 
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arcpy.CalculateField_management(FC2, "R2_80300_P3", "math.sqrt( !NSESUM80300_P2! 

* !R2SUM80300_P2! )", "PYTHON_9.3", "") 

arcpy.CalculateField_management(FC2, "R2_80300", "math.pow( !R2SUM80300_P1! / 

!R2_80300_P3!,2 )", "PYTHON_9.3", "") 

del cur2, row2 

print 'Finished process for Station 80300' 

 

print 'Starting process for Station 93390' 

Iter = 0.00 

Simsum = 0.00 

Simave = 0.00 

cur2 = arcpy.da.UpdateCursor(FC2, FC2_Fields) 

for row2 in cur2: 

    cur = arcpy.da.SearchCursor(FC1, FC1_Fields, sql_clause=(None, 'ORDER BY 

YYYYMMDD')) 

    for row in cur: 

  if row[0] == row2[0]: 

                    if row[1] == 3: 

                        Iter = Iter + 1 

                        row2[5] = ((row[2]*Area3)/1000) 

                    else: 

                        pass 

                    if row[1] == 4: 

                        Iter = Iter + 1 

                        row2[5] += ((row[2]*Area4)/1000) 

                    else: 
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                        pass 

                    if row[1] == 5: 

                        Iter = Iter + 1 

                        row2[5] += ((row[2]*Area5)/1000) 

                    else: 

                        pass 

                    if row[1] == 6: 

                        Iter = Iter + 1 

                        row2[5] += ((row[2]*Area6)/1000) 

                    else: 

                        pass 

                    if row[1] == 7: 

                        Iter = Iter + 1 

                        row2[5] += ((row[2]*Area7)/1000) 

                    else: 

                        pass 

                    if row[1] == 8: 

                        Iter = Iter + 1 

                        row2[5] += ((row[2]*Area8)/1000) 

                    else: 

                        pass 

                    if row[1] == 9: 

                        Iter = Iter + 1 

                        row2[5] += ((row[2]*Area9)/1000) 

                    else: 
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                        pass 

                    if row[1] == 10: 

                        Iter = Iter + 1 

                        row2[5] += ((row[2]*Area10)/1000) 

                    else: 

                        pass 

                    if row[1] == 11: 

                        Iter = Iter + 1 

                        row2[5] += ((row[2]*Area11)/1000) 

                    else: 

                        pass 

                    if row[1] == 13: 

                        Iter = Iter + 1 

                        row2[5] += ((row[2]*Area13)/1000) 

                    else: 

                        pass 

                    if row[1] == 14: 

                        Iter = Iter + 1 

                        row2[5] += ((row[2]*Area14)/1000) 

                    else: 

                        pass 

                    if row[1] == 15: 

                        Iter = Iter + 1 

                        row2[5] += ((row[2]*Area15)/1000) 

                    else: 
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                        pass 

                    if row[1] == 16: 

                        Iter = Iter + 1 

                        row2[5] += ((row[2]*Area16)/1000) 

                    else: 

                        pass 

                    if row[1] == 17: 

                        Iter = Iter + 1 

                        row2[5] += ((row[2]*Area17)/1000) 

                    else: 

                        pass 

                    if row[1] == 18: 

                        Iter = Iter + 1 

                        row2[5] += ((row[2]*Area18)/1000) 

                    else: 

                        pass 

                    if row[1] == 19: 

                        Iter = Iter + 1 

                        row2[5] += ((row[2]*Area19)/1000) 

                    else: 

                        pass 

                    if row[1] == 20: 

                        Iter = Iter + 1 

                        row2[5] += ((row[2]*Area20)/1000) 

                    else: 
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                        pass 

                    if row[1] == 21: 

                        Iter = Iter + 1 

                        row2[5] += ((row[2]*Area21)/1000) 

                    else: 

                        pass 

                    if row[1] == 22: 

                        Iter = Iter + 1 

                        row2[5] += ((row[2]*Area22)/1000) 

                    else: 

                        pass 

                    if row[1] == 23: 

                        Iter = Iter + 1 

                        row2[5] += ((row[2]*Area23)/1000) 

                    else: 

                        pass 

                    if row[1] == 24: 

                        Iter = Iter + 1 

                        row2[5] += ((row[2]*Area24)/1000) 

                    else: 

                        pass 

                    if row[1] == 25: 

                        Iter = Iter + 1 

                        row2[5] += ((row[2]*Area25)/1000) 

                    else: 
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                        pass 

                    if row[1] == 26: 

                        Iter = Iter + 1 

                        row2[5] += ((row[2]*Area26)/1000) 

                    else: 

                        pass 

                    if row[1] == 27: 

                        Iter = Iter + 1 

                        row2[5] += ((row[2]*Area27)/1000) 

                    else: 

                        pass 

                    if row[1] == 28: 

                        Iter = Iter + 1 

                        row2[5] += ((row[2]*Area28)/1000) 

                    else: 

                        pass 

                    if row[1] == 29: 

                        Iter = Iter + 1 

                        row2[5] += ((row[2]*Area29)/1000) 

                    else: 

                        pass 

                    if row[1] == 30: 

                        Iter = Iter + 1 

                        row2[5] += ((row[2]*Area30)/1000) 

                    else: 
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                        pass 

                    if row[1] == 31: 

                        Iter = Iter + 1 

                        row2[5] += ((row[2]*Area31)/1000) 

                    else: 

                        pass 

                    if row[1] == 32: 

                        Iter = Iter + 1 

                        row2[5] += ((row[2]*Area32)/1000) 

                    else: 

                        pass 

                    if row[1] == 33: 

                        Iter = Iter + 1 

                        row2[5] += ((row[2]*Area33)/1000) 

                    else: 

                        pass 

                    if row[1] == 34: 

                        Iter = Iter + 1 

                        row2[5] += ((row[2]*Area34)/1000) 

                    else: 

                        pass 

                    if row[1] == 35: 

                        Iter = Iter + 1 

                        row2[5] += ((row[2]*Area35)/1000) 

                    else: 
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                        pass 

    cur2.updateRow(row2) 

    Simsum = Simsum + row2[5] 

    Simave = Simsum/(Iter/32) 

    arcpy.CalculateField_management(FC2, "SIMSUM93390", Simsum, "PYTHON_9.3", "") 

    arcpy.CalculateField_management(FC2, "SIMAVE93390", Simave, "PYTHON_9.3", "") 

    arcpy.CalculateField_management(FC2, "NSE93390_P1", "math.pow( !OBS_93390! - 

!SIM_93390!,2 )", "PYTHON_9.3", "") 

    arcpy.CalculateField_management(FC2, "PBIAS93390_P1", "(( !OBS_93390! - 

!SIM_93390! ) * 100)/ !OBSSUM93390!", "PYTHON_9.3", "") 

    arcpy.CalculateField_management(FC2, "R2_93390_P1", "(!OBS_93390! - 

!OBSAVE93390! ) * (!SIM_93390! - !SIMAVE93390!)", "PYTHON_9.3", "") 

    arcpy.CalculateField_management(FC2, "R2_93390_P2", "math.pow( !SIM_93390! - 

!SIMAVE93390!,2 )", "PYTHON_9.3", "") 

 

del cur, row, cur2, row2 

 

NSESumP1 = 0.0 

PBIAS = 0.0 

R2SumP1 = 0.0 

R2SumP2 = 0.0 

cur2 = arcpy.da.SearchCursor(FC2, FC2_Fields) 

for row2 in cur2: 

    NSESumP1 = NSESumP1 + row2[85] 

    PBIAS = PBIAS + row2[90] 

    R2SumP1 = R2SumP1 + row2[92] 

    R2SumP2 = R2SumP2 + row2[93] 
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arcpy.CalculateField_management(FC2, "NSESUM93390_P1", NSESumP1, 

"PYTHON_9.3", "") 

arcpy.CalculateField_management(FC2, "NSE_93390","(!NSESUM93390_P2! - 

!NSESUM93390_P1!)/!NSESUM93390_P2!", "PYTHON_9.3", "") 

arcpy.CalculateField_management(FC2, "PBIAS_93390", PBIAS, "PYTHON_9.3", "") 

arcpy.CalculateField_management(FC2, "R2SUM93390_P1", R2SumP1, "PYTHON_9.3", 

"") 

arcpy.CalculateField_management(FC2, "R2SUM93390_P2", R2SumP2, "PYTHON_9.3", 

"") 

arcpy.CalculateField_management(FC2, "R2_93390_P3", "math.sqrt( !NSESUM93390_P2! 

* !R2SUM93390_P2! )", "PYTHON_9.3", "") 

arcpy.CalculateField_management(FC2, "R2_93390", "math.pow( !R2SUM93390_P1! / 

!R2_93390_P3!,2 )", "PYTHON_9.3", "") 

del cur2, row2 

print 'Finished process for Station 93390' 

 

print 'Starting process for Station 93350' 

Iter = 0.00 

Simsum = 0.00 

Simave = 0.00 

cur2 = arcpy.da.UpdateCursor(FC2, FC2_Fields) 

for row2 in cur2: 

    cur = arcpy.da.SearchCursor(FC1, FC1_Fields, sql_clause=(None, 'ORDER BY 

YYYYMMDD')) 

    for row in cur: 

  if row[0] == row2[0]: 

                    if row[1] == 22: 

                        Iter = Iter + 1 
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                        row2[6] = ((row[2]*Area22)/1000) 

                    else: 

                        pass 

                    if row[1] == 24: 

                        Iter = Iter + 1 

                        row2[6] += ((row[2]*Area24)/1000) 

                    else: 

                        pass 

                    if row[1] == 27: 

                        Iter = Iter + 1 

                        row2[6] += ((row[2]*Area27)/1000) 

                    else: 

                        pass 

                    if row[1] == 28: 

                        Iter = Iter + 1 

                        row2[6] += ((row[2]*Area28)/1000) 

                    else: 

                        pass 

                    if row[1] == 34: 

                        Iter = Iter + 1 

                        row2[6] += ((row[2]*Area34)/1000) 

                    else: 

                        pass 

    cur2.updateRow(row2) 

    Simsum = Simsum + row2[6] 
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    Simave = Simsum/(Iter/5) 

    arcpy.CalculateField_management(FC2, "SIMSUM93350", Simsum, "PYTHON_9.3", "") 

    arcpy.CalculateField_management(FC2, "SIMAVE93350", Simave, "PYTHON_9.3", "") 

    arcpy.CalculateField_management(FC2, "NSE93350_P1", "math.pow( !OBS_93350! - 

!SIM_93350!,2 )", "PYTHON_9.3", "") 

    arcpy.CalculateField_management(FC2, "PBIAS93350_P1", "(( !OBS_93350! - 

!SIM_93350! ) * 100)/ !OBSSUM93350!", "PYTHON_9.3", "") 

    arcpy.CalculateField_management(FC2, "R2_93350_P1", "(!OBS_93350! - 

!OBSAVE93350! ) * (!SIM_93350! - !SIMAVE93350!)", "PYTHON_9.3", "") 

    arcpy.CalculateField_management(FC2, "R2_93350_P2", "math.pow( !SIM_93350! - 

!SIMAVE93350!,2 )", "PYTHON_9.3", "") 

 

del cur, row, cur2, row2 

 

NSESumP1 = 0.00 

PBIAS = 0.00 

R2SumP1 = 0.00 

R2SumP2 = 0.00 

cur2 = arcpy.da.SearchCursor(FC2, FC2_Fields) 

for row2 in cur2: 

    NSESumP1 = NSESumP1 + row2[102] 

    PBIAS = PBIAS + row2[107] 

    R2SumP1 = R2SumP1 + row2[109] 

    R2SumP2 = R2SumP2 + row2[110] 

arcpy.CalculateField_management(FC2, "NSESUM93350_P1", NSESumP1, 

"PYTHON_9.3", "") 
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arcpy.CalculateField_management(FC2, "NSE_93350","(!NSESUM93350_P2! - 

!NSESUM93350_P1!)/!NSESUM93350_P2!", "PYTHON_9.3", "") 

arcpy.CalculateField_management(FC2, "PBIAS_93350", PBIAS, "PYTHON_9.3", "") 

arcpy.CalculateField_management(FC2, "R2SUM93350_P1", R2SumP1, "PYTHON_9.3", 

"") 

arcpy.CalculateField_management(FC2, "R2SUM93350_P2", R2SumP2, "PYTHON_9.3", 

"") 

arcpy.CalculateField_management(FC2, "R2_93350_P3", "math.sqrt( !NSESUM93350_P2! 

* !R2SUM93350_P2! )", "PYTHON_9.3", "") 

arcpy.CalculateField_management(FC2, "R2_93350", "math.pow( !R2SUM93350_P1! / 

!R2_93350_P3!,2 )", "PYTHON_9.3", "") 

del cur2, row2 

print 'Finished process for Station 93350' 

# final calculations of integration and accuracy 

# Process: Calculate Field 

arcpy.CalculateField_management(FC2, "NSE_AVE", "( !NSE_30700! + !NSE_20000! + 

!NSE_93300! + !NSE_80300! + !NSE_93390! + !NSE_93350!)/6", "PYTHON_9.3", "") 

 

# Process: Calculate Field (2) 

arcpy.CalculateField_management(FC2, "PBIAS_AVE", "( !PBIAS_30700! + 

!PBIAS_20000! + !PBIAS_93300! + !PBIAS_80300! + !PBIAS_93390! + 

!PBIAS_93350!)/6", "PYTHON_9.3", "") 

# Process: Calculate Field (3) 

arcpy.CalculateField_management(FC2, "R2_AVE", "( !R2_30700! + !R2_20000! + 

!R2_93300! + !R2_80300! + !R2_93390! + !R2_93350!)/6", "PYTHON_9.3", "") 

stop = timeit.default_timer() 

print str(stop - start) + ' seconds' 

print 'Successfully Finished' 
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